(8x⁴+10x³-5x²-4x+1) (2x²+x+1)
Answers
Answer:
GIVEN :
Divide the polynomial (8x⁴+10x³-5x²-4x+1) by the polynomial (2x²+x-1)
TO FIND :
The remainder and quotient for the given polynomial.
SOLUTION :
Given that divide the polynomial (8x⁴+10x³-5x²-4x+1) by the polynomial (2x²+x-1)
4x^2+3x-24x 2 +3x−2
____________________
2x²+x-1 ) 8x⁴+10x³-5x²-4x+1
8x^4+4x^3-4x^28x 4 +4x 3−4x 2
_(-)__(-)___(+)__________
6x^3-x^2-4x6x 3−x 2 −4x
6x^3+3x^2-3x6x 3 +3x 2 −3x
_(-)__(-)__(+)______
-4x^2-x+1−4x 2−x+1
-4x^2-2x+2−4x 2 −2x+2
_(+)__(+)__(-)__
x-1
_____________
The quotient is 4x^2+3x-24x 2+3x−2 and remainder is x-1 when the given polynomial (8x⁴+10x³-5x²-4x+1) is divided by the polynomial (2x²+x-1).
∴ The quotient is 4x^2+3x-24x
2
+3x−2 and remainder is x-1.
Step-by-step explanation:
Answer:
Question:
(8x⁴+10x³-5x²-4x+1) (2x²+x+1)
Solution:
(8x⁴+10x³-5x²-4x+1) (2x²+x+1)
16x⁶+8x⁴+8x⁴20x⁵+10x⁴+10x³-10x⁴-5x²-8x³-4x+2x²+x+1
16x⁶+28x⁵+8x⁴-3x³-7x²-3x+1
Answer:
16x⁶+28x⁵+8x⁴-3x³-7x²-3x+1
Step-by-step explanation:
hope it helps you.