Math, asked by divyansh90271, 9 months ago

8xcube-bcube-12a square*b+6ab square

Answers

Answered by vaishnavi150307
0

Answer:

Step-by-step explanation:

using the algebraic identity:-

x³ + y³ + 3x²y + 3xy² = ( x + y )³

Now ,

8a³ + b³ + 12a²b + 6ab²

= ( 2a )³ + b³ + 3 × ( 2a )² b + 3×(2a)b²

= ( 2a + b )³

= ( 2a + b )( 2a + b )( 2a + b )

( 2a + b ) , ( 2a + b ) , ( 2a + b ) are

factors.

I hope this helps!!

mark it as brainliest if helpful!!

Answered by kamleshkantaria
0

Answer:

The answer is - (2x  -  b)^{3}

Step-by-step explanation:

= 8x^{3} - b^{3} - 12a^{2}b + 6ab^{2}

To solve this follow the identity

= (2x)^{3} - (b)^{3} - 3(2x)^{2}(b) + 3(2x)(b)^{2} [Using identity (a - b)^{3} = a^{3}  -  b^{3}  -  3a^{2}b  +  3ab^{2}]

As here a = 2x and b = b (Solved above)

So,

Continue

= (2x)^{3} - (b)^{3} - 3(2x)^{2}(b) + 3(2x)(b)^{2}

= (2x  -  b)^{3}

Factors = (2x - b),(2x - b),(2x - b)

FOR PROVING THE ANSWER THE ANSWER RIGHT

PROOF

8x^{3} - b^{3} - 12a^{2}b + 6ab^{2} = (2x  -  b)^{3}

                                    = (2x)^{3} - (b)^{3} - 3(2x)^{2}(b) + 3(2x)(b)^{2}  [Using identity (a - b)^{3} = a^{3}  -  b^{3}  -  3a^{2}b  +  3ab^{2}]

8x^{3} - b^{3} - 12a^{2}b + 6ab^{2} = 8

Hence proved

L.H.S = R.H.S

HOPE THE ANSWER WILL BE A GREAT PATH OF LEARNING MATE

HAVE A NICE DAY

BE SAFE

Similar questions