9^2 - 9(a + b)x + (2a^2 + 2b^2) = 0. Solve by factorization
Answers
Answered by
0
Answer:
Here, we have
9x² - 9(a + b)x + (2a² + 5ab + 2b²) = 0
Therefore,
Constant term = 2a² + 5ab + 2b²
= 2a² + 4ab + ab + 2b²
= 2a(a + 2b) + b(a + 2b)
= (a + 2b) (2a + b)
Coefficient of middle term = - 9(a + b) = - 3[(2a + b) + (a + 2b)
Then,
⇒ 9x² - 9(a + b)x + (2a² + 5ab + 2b²) = 0
⇒ 9x² - 3[(2a + b) + (a + 2b)]x + (2a + b) (a + 2b) = 0
⇒ 9x² - 3(2a + b)x - 3(a + 2b)x + (2a + b) (a + 2b) = 0
⇒ 3x[3x - (2a + b) - (a + 2b) [3x - (2a + b)] = 0
⇒ [3x - (2a + b)] [3x - (a + 2b) = 0
⇒ [3x - (2a +b)] = 0 or [3x - (a + 2b) = 0
⇒ x = 2a + b/3, a + 2b/3
Hence, x = 2a + b/3, a + 2b/3p-by-step explanation:
Similar questions