9.4^-1/x +5.6^-1/x>4.9-1/x
please solve it
Attachments:
Answers
Answered by
4
9.4^-1/x + 5.6^-1/x > 4.9^-1/x
let 2^-1/x = P , and 3^-1/x = Q
9.(2²)^-1/x + 5.(2^-1/x)(3^-1/x) -4.(3²)^-1/x
9{ 2^-1/x}² + 5(2^-1/x)(3^-1/x) -4{ 3^-1/x}² >0
9P² + 5PQ - 4Q² >0
9P² +9PQ - 4PQ - 4Q² >0
9P( P + Q) -4Q( P + Q) >0
( 9P -4Q)( P+ Q) >0
we know , exponential function always positive ,
hence,
2^-1/x >0
3^-1/x >0
hence,
( 2^-1/x + 3^-1/x) > 0 for all x belongs real numbers ,
hence,
( P + Q) > 0 always for all x€R
now,
rest
( 9P -4P) ( positive ) >0
hence,
( 9P - 4Q ) > 0
9P > 4Q
9.2^-1/x > 4.3^-1/x
9/4 > ( 3/2)^-1/x
(3/2)² > (3/2)^-1/x
3/2 is greater then 1 so, after removing no sign change ,
2 > -1/x
1/x > -2
1/x + 2 > 0
( 1 + 2x)/x > 0
so, x € ( -∞, -1/2) U ( 0 , ∞ )
let 2^-1/x = P , and 3^-1/x = Q
9.(2²)^-1/x + 5.(2^-1/x)(3^-1/x) -4.(3²)^-1/x
9{ 2^-1/x}² + 5(2^-1/x)(3^-1/x) -4{ 3^-1/x}² >0
9P² + 5PQ - 4Q² >0
9P² +9PQ - 4PQ - 4Q² >0
9P( P + Q) -4Q( P + Q) >0
( 9P -4Q)( P+ Q) >0
we know , exponential function always positive ,
hence,
2^-1/x >0
3^-1/x >0
hence,
( 2^-1/x + 3^-1/x) > 0 for all x belongs real numbers ,
hence,
( P + Q) > 0 always for all x€R
now,
rest
( 9P -4P) ( positive ) >0
hence,
( 9P - 4Q ) > 0
9P > 4Q
9.2^-1/x > 4.3^-1/x
9/4 > ( 3/2)^-1/x
(3/2)² > (3/2)^-1/x
3/2 is greater then 1 so, after removing no sign change ,
2 > -1/x
1/x > -2
1/x + 2 > 0
( 1 + 2x)/x > 0
so, x € ( -∞, -1/2) U ( 0 , ∞ )
Ravi204:
thank you bhai
Similar questions
India Languages,
8 months ago
Biology,
8 months ago
Computer Science,
1 year ago
Physics,
1 year ago
English,
1 year ago
Music,
1 year ago