Math, asked by lipikachowdhury73, 1 month ago

9/4-[19/4-{2/1+(10/3÷5/3*5/4-4/1)}]​

Answers

Answered by TwilightShine
9

Answer :-

  • The answer is -2.

Step-by-step explanation :-

\sf \dfrac{9}{4} - \left[\dfrac{19}{4} - \left\{\dfrac{2}{1} + \left(\dfrac{10}{3} \div \dfrac{5}{3} \times \dfrac{5}{4} - \dfrac{4}{1} \right)\right\}\right]

--------------------------------

Let's solve the round brackets first!

\sf \left(\dfrac{10}{3} \div \dfrac{5}{3} \times \dfrac{5}{4} - \dfrac{4}{1} \right)

The reciprocal of 5/3 is 3/5. So we get :-

\sf \left(\dfrac{\cancel{10}}{\cancel{3}} \times \dfrac{\cancel{3}}{\cancel{5}} \times \dfrac{5}{4} - \dfrac{4}{1} \right)

Reducing the numbers,

\sf \left(\dfrac{2}{1} \times \dfrac{1}{1} \times \dfrac{5}{4} - \dfrac{4}{1} \right)

Multiplying the remaining numbers,

\sf \left(\dfrac{2}{1} \times \dfrac{5}{4} - \dfrac{4}{1} \right)

Multiplying 2/1 with 5/4,

\sf \left(\dfrac{10}{4} - \dfrac{4}{1} \right)

The LCM of 1 and 4 is 4, so subtracting the fractions using their denominators,

\sf \left(\dfrac{10 \times 1 - 4 \times 4}{4} \right)

On simplifying,

\sf \left(\dfrac{10 - 16}{4} \right)

Subtracting 16 from 10,

\sf \left(\dfrac{-6}{\:\:\:4}\right)

Reducing the fraction to it's simplest form,

\sf \left( \dfrac{-3}{\:\:\:2} \right)

--------------------------------

Now let's solve the curly brackets!

\sf \left\{\dfrac{2}{1} + \dfrac{-3}{\:\:\:2}\right\}

The LCM of 1 and 2 is 2, so adding the fractions using their denominators,

\sf \left\{\dfrac{2\times2 + (-3) \times 1}{2} \right\}

On simplifying,

\sf \left\{\dfrac{4 + (-3)}{2} \right\}

Adding -3 to 4,

\sf \left\{\dfrac{1}{2}\right\}

--------------------------------

Now at last let's solve the square brackets!

\sf \left[\dfrac{19}{4} - \dfrac{1}{2} \right]

The LCM of 4 and 2 is 4, so subtracting the fractions using their denominators,

\sf \left[\dfrac{19 \times 1 - 1 \times 2}{4} \right]

On simplifying,

\sf \left[\dfrac{19 - 2}{4} \right]

Subtracting 2 from 19,

\sf \left[\dfrac{17}{4}\right]

--------------------------------

Finally let's subtract the result from 9/4 to get our answer, since we have solved all the brackets!

\sf \dfrac{9}{4} - \dfrac{17}{4}

The denominators of the fractions are same, so let's subtract them like normal numbers.

\sf \dfrac{9-17}{4}

Subtracting 17 from 9,

\sf \dfrac{-8}{\:\:\:4}

Reducing the fraction to it's simplest form,

\sf \dfrac{-2}{\:\:\:1}

Removing the denominator,

\underline{\boxed{\sf -2}}

________________________________

\underline{\underline{\bf Know \: more :\!\!-}}

  • We solved the above question using BODMAS.

BODMAS stands for :-

  • B - Bracket
  • O - Of
  • D - Division
  • M - Multiplication
  • A - Addition
  • S - Subtraction

--------------------------------------

\underline{\underline{\bf Order \: of \: Brackets :\!\!-}}

  • First brackets or round brackets :- ()

  • Second brackets or curly brackets :- {}

  • Third brackets or square brackets :- []

________________________________

Similar questions