Math, asked by SiSachin, 1 year ago

(9/4)^x (8/27)^x-1=2/3 then...value of (x)

Answers

Answered by rohitkumargupta
63
HELLO DEAR,

{ (\frac{9}{4}) }^{x}  \times  { \frac{8}{27} }^{x - 1}  =  \frac{2}{3}    \\  \\  =  >  {( \frac{2}{3} )}^{ - 2x}  \times  {( \frac{2}{3} )}^{3(x - 1)}  =  \frac{2}{3}  \\  \\  =  { (\frac{2}{3} )}^{ - 2x + 3x - 3}  =  \frac{2}{3}  \\  \\  = >  x - 3 = 1 \\  \\  =  > x = 4


I HOPE ITS HELP YOU DEAR,
THANKS
Answered by athleticregina
36

Answer:

The value of x in the expression (\frac{9}{4})^x \times (\frac{8}{27})^{x-1}=\frac{2}{3} is 4.    

Step-by-step explanation:

Consider the given expression

(\frac{9}{4})^x \times (\frac{8}{27})^{x-1}=\frac{2}{3}

(\frac{3^2}{2^2})^x \times (\frac{2^3}{3^3})^{x-1}=\frac{2}{3}

Using property of exponents, (a^n)^m=a^{mn} , we get,

(\frac{3}{2})^2x \times (\frac{2}{3})^{3(x-1)}=\frac{2}{3}

Using property of exponents, a^m=(\frac{1}{a})^{-m}

(\frac{2}{3})^{-2x} \times (\frac{2}{3})^{3(x-1)}=\frac{2}{3}

Using property of exponents, a^n \times a^m=a^{n+m}

(\frac{2}{3})^{-2x+3(x-1)}=\frac{2}{3}

Now comparing power in both sides, a^m=a^n \Rightarrow m=n

{-2x+3(x-1)}=1

Solving for x, we get,

-2x+3x-3=1

x=4

Thus, the value of x in the expression (\frac{9}{4})^x \times (\frac{8}{27})^{x-1}=\frac{2}{3} is 4.    

Similar questions