Math, asked by nirmala50, 11 months ago

(9,-7)(2,4)(0,0)are the midpoints of the sides ab,bc,ca then are a of the triangle abc is​

Answers

Answered by kartik2507
16

Answer:

100 sq unit

Step-by-step explanation:

let the midpoint of AB be D = (9, -7)

let the midpoint of BC be E = (2, 4)

let the midpoint of AC be F = (0, 0)

join D E F to form a triangle

area of triangle =

 =  \frac{1}{2}  |x1(y2 - y3) + x2(y3 - y1) + x3(y1 - y2)|  \\  =  \frac{1}{2}  |9(4 - 0) + 2(0 - ( - 7) + ( 0)( - 11 - ( - 3))|  \\  =  \frac{1}{2}  |9 \times 4 + 2 \times 7 + 0 \times  - 8|  \\  =  \frac{1}{2}  |36 + 14|  \\  =  \frac{1}{2}  \times 50 \\  = 25 \: sq \: unit

according to midpoint theorem

ratio of area formed by joining midpoint of the triangle to area of triangle is 1:4

25 : x :: 1 : 4

x × 1 = 25 × 4

x = 100

therefore the area of required triangle ABC is 100 sq units

alternative method

let the required triangle be ABC

let the midpoint of AB be D = (9, -7)

let the midpoint of BC be E = (2, 4)

let the midpoint of AC be F = (0, 0)

A = (x1, y1) B = (x2, y2) C = (x3, y3)

D is midpoint of AB

 \frac{x1 + x2}{2}  = 9 \:  \:  \: x1 + x2 = 18 \\  \frac{x2 + x3}{2}  = 2 \:  \:  \: x2 + x3 = 4 \\  \frac{x3 + x1}{2}  = 0 \:  \:  \: x3 + x1 = 0 \\ adding \: the \: above \:  \\ 2(x1 + x2 + x3) = 22 \\ x1 + x2 + x3 = 11 \\ x1 + 4 = 11 \:  \:   \:  \:  \: \: x1 = 11 - 4 = 7 \\   x2 + 0 = 11 \:  \:  \:  \:  \:  \: x2 = 11\\  x3 + 18 = 11 \:  \:  \:  \: x3 =  - 7  \\ \\ \frac{y1 + y2}{2}  =  - 7  \:  \:  \:  \:  y1 + y2 =  - 14 \\  \frac{y2 + y3}{2} = 4 \:  \:  \:  \:  \:  \:  \: y2 + y3 = 8  \\  \frac{y3 + y1}{2}  = 0 \:  \:  \:  \: y3 + y1 = 0 \\ adding \: the \: above \\ 2(y1 + y2 + y3) =  - 6 \\ y1 + y2 + y3 =  - 3 \\ y1 + 8 =  - 3 \:  \:  \:  \: y1 =  - 11 \\ y2 + 0 =  - 3 \:  \:  \:  \: y2 =  - 3 \\ y3   - 14 =  - 3 \:  \:  \: y3 = 11

A = (x1, y1) = (7, -11)

B = (x2, y2) = (11, -3)

C = (x3, y3) = (-7, 11)

area of ∆ABC

  = \frac{1}{2}  |x1(y2 - y3) + x2(y3 - y1) + x3(y1 - y2)|  \\  =  \frac{1}{2}  |7(11 - ( - 3)) + 11(11 - ( - 11)) + ( - 7( - 11 - ( - 3)))|  \\  =  \frac{1}{2}  |(7 \times  - 14) + (11 \times 22) + ( - 7 \times  - 8)|  \\  =  \frac{1}{2}  | - 98 + 242 + 56|  \\  =  \frac{1}{2}  \times ( - 98 + 298) \\  =  \frac{1}{2}  \times 200 \\  = 100 \: sq \: units

hope you get your answer

Answered by viditamitsingh
1

Answer:

100 squad unit

step by step expiation:

et the midpoint of AB be D = (9, -7)

let the midpoint of BC be E = (2, 4)

let the midpoint of AC be F = (0, 0)

join D E F to form a triangle

area of triangle =

\begin{gathered} = \frac{1}{2} |x1(y2 - y3) + x2(y3 - y1) + x3(y1 - y2)| \\ = \frac{1}{2} |9(4 - 0) + 2(0 - ( - 7) + ( 0)( - 11 - ( - 3))| \\ = \frac{1}{2} |9 \times 4 + 2 \times 7 + 0 \times - 8| \\ = \frac{1}{2} |36 + 14| \\ = \frac{1}{2} \times 50 \\ = 25 \: sq \: unit\end{gathered}

=

2

1

∣x1(y2−y3)+x2(y3−y1)+x3(y1−y2)∣

=

2

1

∣9(4−0)+2(0−(−7)+(0)(−11−(−3))∣

=

2

1

∣9×4+2×7+0×−8∣

=

2

1

∣36+14∣

=

2

1

×50

=25squnit

according to midpoint theorem

ratio of area formed by joining midpoint of the triangle to area of triangle is 1:4

25 : x :: 1 : 4

x × 1 = 25 × 4

x = 100

therefore the area of required triangle ABC is 100 sq units

alternative method

let the required triangle be ABC

let the midpoint of AB be D = (9, -7)

let the midpoint of BC be E = (2, 4)

let the midpoint of AC be F = (0, 0)

A = (x1, y1) B = (x2, y2) C = (x3, y3)

D is midpoint of AB

\begin{gathered} \frac{x1 + x2}{2} = 9 \: \: \: x1 + x2 = 18 \\ \frac{x2 + x3}{2} = 2 \: \: \: x2 + x3 = 4 \\ \frac{x3 + x1}{2} = 0 \: \: \: x3 + x1 = 0 \\ adding \: the \: above \: \\ 2(x1 + x2 + x3) = 22 \\ x1 + x2 + x3 = 11 \\ x1 + 4 = 11 \: \: \: \: \: \: x1 = 11 - 4 = 7 \\ x2 + 0 = 11 \: \: \: \: \: \: x2 = 11\\ x3 + 18 = 11 \: \: \: \: x3 = - 7 \\ \\ \frac{y1 + y2}{2} = - 7 \: \: \: \: y1 + y2 = - 14 \\ \frac{y2 + y3}{2} = 4 \: \: \: \: \: \: \: y2 + y3 = 8 \\ \frac{y3 + y1}{2} = 0 \: \: \: \: y3 + y1 = 0 \\ adding \: the \: above \\ 2(y1 + y2 + y3) = - 6 \\ y1 + y2 + y3 = - 3 \\ y1 + 8 = - 3 \: \: \: \: y1 = - 11 \\ y2 + 0 = - 3 \: \: \: \: y2 = - 3 \\ y3 - 14 = - 3 \: \: \: y3 = 11\end{gathered}

2

x1+x2

=9x1+x2=18

2

x2+x3

=2x2+x3=4

2

x3+x1

=0x3+x1=0

addingtheabove

2(x1+x2+x3)=22

x1+x2+x3=11

x1+4=11x1=11−4=7

x2+0=11x2=11

x3+18=11x3=−7

2

y1+y2

=−7y1+y2=−14

2

y2+y3

=4y2+y3=8

2

y3+y1

=0y3+y1=0

addingtheabove

2(y1+y2+y3)=−6

y1+y2+y3=−3

y1+8=−3y1=−11

y2+0=−3y2=−3

y3−14=−3y3=11

A = (x1, y1) = (7, -11)

B = (x2, y2) = (11, -3)

C = (x3, y3) = (-7, 11)

area of ∆ABC

\begin{gathered} = \frac{1}{2} |x1(y2 - y3) + x2(y3 - y1) + x3(y1 - y2)| \\ = \frac{1}{2} |7(11 - ( - 3)) + 11(11 - ( - 11)) + ( - 7( - 11 - ( - 3)))| \\ = \frac{1}{2} |(7 \times - 14) + (11 \times 22) + ( - 7 \times - 8)| \\ = \frac{1}{2} | - 98 + 242 + 56| \\ = \frac{1}{2} \times ( - 98 + 298) \\ = \frac{1}{2} \times 200 \\ = 100 \: sq \: units\end{gathered}

=

2

1

∣x1(y2−y3)+x2(y3−y1)+x3(y1−y2)∣

=

2

1

∣7(11−(−3))+11(11−(−11))+(−7(−11−(−3)))∣

=

2

1

∣(7×−14)+(11×22)+(−7×−8)∣

=

2

1

∣−98+242+56∣

=

2

1

×(−98+298)

=

2

1

×200

=100squnits

hope you get your answer

Similar questions