Math, asked by bakopatel, 1 year ago

9*9^(1/(3x-1))=9^x, Solve for x

Answers

Answered by Swarup1998
15
\underline{\underline{\mathbb{FORMULAS :}}}

1.\:x^{a}*x^{b}=x^{a+b}

2.\:x^{p}=x^{q} \implies p= q

\underline{\underline{\mathbb{SOLUTION :}}}

\textsf{Given that,}\: 9*9^{\frac{1}{3x-1}}=9^{x}

\to 9^{1}*9^{\frac{1}{3x-1}}=9^{x}

\to 9^{1+\frac{1}{3x-1}}=9^{x}

\boxed{\textsf{since}\:x^{a}*x^{b}=x^{a+b}}

\to 1+\frac{1}{3x-1}=x

\boxed{\textsf{where}\:x^{p}=x^{q} \implies p= q}

\to \frac{3x-1+1}{3x-1}=x

\to \frac{3x}{3x-1}=x

\to 3x = x(3x-1)

\to 3x = 3x^{2}-x

\to 3x^{2}-x-3x=0

\to 3x^{2}-4x=0

\to x(3x-4)=0

\textsf{Either x = 0 or, 3x - 4 = 0}

\implies \boxed{\bold{x = 0, \frac{4}{3}}}

\textsf{which is the required}\:{\textsf{sol}}^{\textsf{n}}.

bakopatel: Thanks
Similar questions