Math, asked by vi67608, 8 months ago

9,99, 999, 9999 ....... t100, Find the Sum ?​

Answers

Answered by anchal12jain
2

9 + 99 + ... +t100

By taking 9 common

9(1 + 11 + 111 + ...... + t 100)

= 9 { (0 + 1) + (10 + 1) + (100 + 1) ....... + ( 10¹⁰ + 1) }

= 9 [ (0 + 10 + 100 + ...... + 10¹⁰) + (1 + 1 + ...... + 1) ]

= 9 [ 0 + 10 + ..... + 10¹⁰] + 9 [ 100(1)]

Let A = 0 + 10 + ..... + 10¹⁰

a = 10 , r = 10, n = 99

</p><p>s \: = \frac{a(r {}^{n} - 1) }{r - 1}</p><p>

A = 10 ( 10⁹⁹ - 1)/ 9

Now,

9 + 99 + ... +t100

= 9 [ 0 + 10 + ..... + 10¹⁰] + 9 [ 100(1)]

= A + 900

= 10 ( 10⁹⁹ - 1)/ 9 +900

Hope this helps!

Please mark as brainliest

Similar questions