Math, asked by deepikarul7, 9 months ago

(9) A bag
contains
3 red balls, s black balls and
4 white balls. A ball is drawn out random
Prom the bag what is the probability that
the ball dioun is:
(i.) white ?​

Answers

Answered by Anonymous
14

Answer:

1/12

Explanation :

  • Given : A bag contains 3 red balls , 5 black balls , 4 white balls
  • To find : Probability of the ball drawn is a white ball
  • Solution : No. of favourable outcomes / No. of possible outcomes

No. of favourable outcomes is 1

No. of possible outcomes is 12

Therefore , 1/12 is the probability that drawn ball is white in colour.

Hope it helps :)

Answered by Vamprixussa
62

QUESTION

A bag contains 3 red balls, 5 black balls and 4 white balls. A ball is drawn at random from the bag. What is the probability that the ball drawn is:

(i) white?        (ii) red?       (iii) black?       (iv) not red?

                                                                 

SOLUTION

Given

\bold{Total \ no: \ of \ red \ balls} = 3

\bold{Total \ no: \ of \ black \ balls} = 5

\bold{Total \ no: \ of \ white \ balls} = 4

\implies \bold{Total \ no: \ of \  \ balls} = 3+5+4=12

                                                                 

SOMETHING YOU NEED TO KNOW

\boxed{\bold{Probability \ of \ an \ outcome = \dfrac{Given \ outcome}{Total \ no: \ of \ outcomes}}}}}

                                                                 

1) Probability of a white ball

\bold{Probability \ of \ a \ white \ ball = \dfrac{Total \ no: \ of \ white \ balls}{Total \ no: \ of \ balls}}}}

\implies \dfrac{4}{12}

\implies \boxed{\boxed{\bold{\frac{1}{3}}}}}

                                                                 

2) Probability of a red ball

\bold{Probability \ of \ a \ red \ ball = \dfrac{Total \ no: \ of \ red \ balls}{Total \ no: \ of \ balls}}}}

\implies \dfrac{3}{12}

\implies \boxed{\boxed{\bold{\frac{1}{4}}}}}

                                                                 

3) Probability of a black ball

\bold{Probability \ of \ a \ black \ ball = \dfrac{Total \ no: \ of \ black \ balls}{Total \ no: \ of \ balls}}}}

\implies \boxed{\boxed{\bold{\frac{5}{12}}}}}

                                                                 

4) Probability of not getting a red ball

\bold{Probability \ of \ not \ getting \  a \ red \ ball =1- \dfrac{Total \ no: \ of \ red \ balls}{Total \ no: \ of \ balls}}}}

\implies 1 - \dfrac{1}{4}

\implies  \dfrac{4-1}{4}

\implies \boxed{\boxed{\bold{\frac{3}{4}}}}}

                                                                 

Similar questions