Math, asked by Truehelper, 10 months ago

9. A cylindrical container with internal radius of
its base 10 cm, contains water up to a height
of 7 cm. Find the area of the wet surface of
the cylinder.​

Answers

Answered by vinay200602
0

Step-by-step explanation:

if it is a closed cylindrical container then

area of the wet surface of the cylinder = tsa of cylinder =

2\pi \: r(h + r)

2*22/7*10(7+10)

440/7(17)

now solve this

Answered by nilesh102
1

\huge\underline\red{solution} : -  \\  \\ \underline\red{given} : -  \: A  \: cylinder \:  container  \: with  \:  \\ internal \:  radius  \: of  \: its \:  base \:  10 \: cm, \:   \\ contains  \: water \:  up \: to \:  height  \: of \:  7cm. \\  \red{ 1)} \purple{  \: radius = 10 \: cm \:  \: and  \: \: height = 7 \: cm }\\   \\ \underline \red{find}: -  \: area  \: of \:  the  \:  of \:  the \:  cylinder. \\ \\   \red{formula} : - \\  \\ \: Area \: of \: cylinder \:  = 2 \: \pi \: r \: h \:  +2 \pi  \: {r}^{2}   \\  \\ \: Area \: of \: cylinder \:  = 2  \times \frac{22}{7}  \times 10  \times  7 \:  +  2\times\frac{22}{7}  \times {(10)}^{2}   \\  \\ \: Area \: of \: cylinder \:  = 2  \times 22 \times 10   \:  +   \frac{44}{7} \times 100 \\  \\ \: Area \: of \: cylinder \:  = 440 +  \frac{4400}{7}  \\  \\ \:  Area \: of \: cylinder \:  =  \frac{440 \times 7}{7} +  \frac{4400}{7}  \\  \\ \:  Area \: of \: cylinder \:  =  \frac{3080 }{7}  +  \frac{4400}{7}  \\  \\ Area \: of \: cylinder \:  =  \frac{3080 + 4400 }{7}  \\  \\ Area \: of \: cylinder \:  =  \frac{7480 }{7}  \\  \\  \: Area \: of \: cylinder \:  = 1068.571429  \:  {cm}^{2}  \\  \\ \underline{ hence \: the \: are \: of \: cylindricl \: container \: is}  \\ \underline \red{1068.571429 \:  {cm}^{2} .} \:  \\   \\ \fcolorbox{red}{white}{i \: hope \: it \: helps \: you.}

Similar questions