Math, asked by hardik59264, 2 months ago

9. A rectangle has dimensions 10 cm by 5
cm. Determine the measures of the angles at
the point where the diagonals intersect.
10. The lengths of side AB and side BC of a
scalene triangle ABC are 12 cm and 8 cm
respectively. The size of angle C is 59º. Find
the length of side AC.

Answers

Answered by sia1234567
17

 \huge\colorbox{pink}{answer}  \: \blacktriangledown

 \bold{  \star \: \angle \: a = 12 \: cm} \\ \bold{  \star \:  \angle \: b = 8 \: cm} \\    \bold{\star \:  \angle \: c = 59 \degree ≈ \: 60 \degree}

  \red{\underline{   \underline\bold{\dagger \: using \: consine \: formulae}}}

 \bold{ \leadsto \:   \frac{\cos(c)  \: =  \:  {a}^{2}  +  {b}^{2}  -  {c}^{2}}{2ab}} \\

  \sf\leadsto \cos(60 \degree) =  \frac{ {12}^{2} +  {8}^{2}  -  {c}^{2} }{2 \times 12 \times 8}  \\

 \sf \leadsto \:  \frac{1}{2}  \:  =  \:  \frac{144 + 64 -  {c}^{2} }{196} \\

 \leadsto \sf \frac{1}{2}  =  \frac{208 -  {c}^{2} }{192}  \\

 \sf \leadsto \: 416 - 2 {c}^{2}  = 192

 \sf \leadsto \:  {2c}^{2}  = 416 - 192

 \sf \leadsto \: {2c}^{2} = 224

 \sf \leadsto \:  {c}^{2}  = 112

 \sf \leadsto \: c =  \sqrt{112}  = 10.58

  \sf\leadsto \: c = 10.58 \: ≈ \: 10

 \hookrightarrow \fbox{\underline{\: c = 10 \: cm}}

________________________________

Answered by muskansingh3707126
0

Step-by-step explanation:

 \huge\colorbox{pink}{answer}  \: \blacktriangledown

 \bold{  \star \: \angle \: a = 12 \: cm} \\ \bold{  \star \:  \angle \: b = 8 \: cm} \\    \bold{\star \:  \angle \: c = 59 \degree ≈ \: 60 \degree}

  \red{\underline{   \underline\bold{\dagger \: using \: consine \: formulae}}}

 \bold{ \leadsto \:   \frac{\cos(c)  \: =  \:  {a}^{2}  +  {b}^{2}  -  {c}^{2}}{2ab}} \\

  \sf\leadsto \cos(60 \degree) =  \frac{ {12}^{2} +  {8}^{2}  -  {c}^{2} }{2 \times 12 \times 8}  \\

 \sf \leadsto \:  \frac{1}{2}  \:  =  \:  \frac{144 + 64 -  {c}^{2} }{196} \\

 \leadsto \sf \frac{1}{2}  =  \frac{208 -  {c}^{2} }{192}  \\

 \sf \leadsto \: 416 - 2 {c}^{2}  = 192

 \sf \leadsto \:  {2c}^{2}  = 416 - 192

 \sf \leadsto \: {2c}^{2} = 224

 \sf \leadsto \:  {c}^{2}  = 112

 \sf \leadsto \: c =  \sqrt{112}  = 10.58

  \sf\leadsto \: c = 10.58 \: ≈ \: 10

 \hookrightarrow \fbox{\underline{\: c = 10 \: cm}}

________________________________

Similar questions