Math, asked by surajkumar1567, 9 months ago

9. ABCD is a parallelogram. AE and AF are bisectors of
interior and exterior angles respectively at A and BE
and BF are bisectors of interior and exterior angles
respectively at B. Show that AFBE is a parallelo-
gram.​

Answers

Answered by palaksharma4422
1

Step-by-step explanation:

∵AEisbisectorofanangle∠AB

∴∠DAE=∠EAB..............(i)

∴BEisbisectofangle∠CBA

∴∠CBE=∠EBA...............(ii)

DA∥BC

∠DAB+∠CBA=180

∠DAE+∠EAB+∠CBE+∠EBA=180

fromeq(i)and(ii)

∠EAB+∠EAB+∠EAB+∠EAB=180

0

2(∠EAB+∠EBA)=180

0

∠EAB+∠EAB=90

0

..............(iii)

InΔAEB

∠AEB+∠EAB+∠EBA=180

0

(propertyofΔ)

fromeq

n

...(iii)

∠AEB+90=180

0

∠AEB=90

0

∴∠E=90

0

........(iv)

Similarly,

∠F=90

0

.........(v)

∵AFisbisectof∠BAM

∴∠BAF=∠MAF......(vi)

∠DAB+∠BAM=180

o

(linearpair)

∠DAB+EAB+∠BAF+∠MAF=180

0

Fromeq

n

(i)and(vi)

∠EAB+∠EAB+∠BAF+∠BAF=180

0

⇒∠EAB+∠BAF=90

0

⇒∠A=90

0

..........(vii)

SimilarlyBFbisect∠ABNandwewillobtain

∠B=90

0

.........(vii)

Since∠A=∠B=90

0

and∠E=∠F=90

0

oppositeanglesareequalhenceAFBEisaparallelogram.

Answered by garvVishnu
0

AEisbisectorofanangle∠AB

∴∠DAE=∠EAB..............(i)

∴BEisbisectofangle∠CBA

∴∠CBE=∠EBA...............(ii)

DA∥BC

∠DAB+∠CBA=180

∠DAE+∠EAB+∠CBE+∠EBA=180

fromeq(i)and(ii)

∠EAB+∠EAB+∠EAB+∠EAB=180

0

2(∠EAB+∠EBA)=180

0

∠EAB+∠EAB=90

0

..............(iii)

InΔAEB

∠AEB+∠EAB+∠EBA=180

0

(propertyofΔ)

fromeq

n

...(iii)

∠AEB+90=180

0

∠AEB=90

0

∴∠E=90

0

........(iv)

Similarly,

∠F=90

0

.........(v)

∵AFisbisectof∠BAM

∴∠BAF=∠MAF......(vi)

∠DAB+∠BAM=180

o

(linearpair)

∠DAB+EAB+∠BAF+∠MAF=180

0

Fromeq

n

(i)and(vi)

∠EAB+∠EAB+∠BAF+∠BAF=180

0

⇒∠EAB+∠BAF=90

0

⇒∠A=90

0

..........(vii)

SimilarlyBFbisect∠ABNandwewillobtain

∠B=90

0

.........(vii)

Since∠A=∠B=90

0

and∠E=∠F=90

0

oppositeanglesareequalhenceAFBEisaparallelogram.

Similar questions