Math, asked by abhishek0919, 6 months ago

9. Calculate the area and the height of an equilateral triangle whose perimeter is 60 cm.​

Answers

Answered by DüllStâr
47

Question:

Calculate the area and the height of an equilateral triangle whose perimeter is 60 cm.

Given:

  • perimeter = 60 cm

To find:

  • Area
  • height

Answer:

To find area first we have to find sides of triangle.

To find area first we have to find sides of triangle.So:

perimeter = side \: 1 + side \: 2 + side \: 3

As we know equilateral triangle has all sides equal:

 \therefore \: perimeter = 3 \times sides

Put the value of perimeter:

\implies 60 = 3 \times side

\implies side =  \dfrac{60}{3}

\implies side = 20✓

So we get the value of side ie 20

formula used to find area of equilateral triangle:

area \:  =   \frac{\sqrt{3}  {(side)}^{2} }{4}

Explanation:

\implies area =   \frac{\sqrt{3}  \times  {20}^{2} }{4}

\implies area =   \frac{ \sqrt{3}  \times 400}{4}

\implies area = 10 0\sqrt{3} \:   {cm}^{2}

Can leave upto here but exactly area would be

area = 10 0 \times 1732cm²

area = 17.32cm²

Now to find height:

Formula used:

height = \frac{  \sqrt{3}  \times 20}{2}

Explanation:

\implies height =  10\sqrt{3 }

Can leave upto here

Can leave upto hereBut exactly height would be:

\implies height = 10 \times 1.732

\implies height = 17.32 \: cm✓

Answered by Anonymous
9

\bf{\underline{Given:-}}

Perimeter of the equilateral triangle = 60 cm

\bf{\underline{To\:Find:-}}

  • Height of the triangle
  • Area of the triangle

\bf{\underline{Solution:-}}

We know,

\sf{\underline{Perimeter\:of\:an\:equilateral\:triangle = 3a}}

Therefore,

3a = 60

= \sf{ a = \dfrac{60}{3}}

\sf{\implies a = 20\:cm}

Now,

\sf{S = \dfrac{a+b+c}{2}}

We know all the sides of an equilateral triangle are equal.

Hence,

\sf{S = \dfrac{20+20+20}{2}}

= \sf{S = \dfrac{60}{2}}

\sf{\implies S = 30\:cm}

Now,

According to Heron's Formula

\sf{Area = \sqrt{s(s-a)(s-b)(s-c)}\:\:sq.units}

= \sf{Area = \sqrt{30(30-20)(30-20)(30-20)}\:\:cm^2}

= \sf{Area = \sqrt{30\times10\times10\times10}\:\:cm^2}

= \sf{Area = 10\sqrt{10\times3\times10}\:\:cm^2}

= \sf{Area = 10\times10\sqrt{3}\:\:cm^2}

= \sf{Area = 100\sqrt{3}\:\:cm^2}

\sf{\implies Area = 100\times 1.732\:\:cm^2}

\sf{\implies Area = 173.2\:\: cm^2\:\:[Approx]}

\sf{\therefore The \:area\:of\: the\: triangle\: is\: 100\sqrt{3}\:cm^2 \:[or \:173.2\: cm^2\: (Approx)]}

Now,

To find Height of the triangle

= \sf{Area = \dfrac{1}{2}\times base \times height}

\sf{\implies 100\sqrt{3} = \dfrac{1}{2} \times 20 \times height}

\sf{\implies 100\sqrt{3} = 10\times height}

\sf{\implies \dfrac{100\sqrt{3}}{10} = height}

\sf{\implies height = 10\sqrt{3}\:\:cm}

\sf{\implies height = 10\times 1.732\:\:cm}

\sf{\implies height = 17.32\:\:cm\:\:[Approx]}

\sf{\therefore The \:height \:of\: the\: triangle\: is\: 10\sqrt{3}\:cm\:\:[or\: 17.32 \:cm \:(Approx)]}

\bf{\underline{Additional\:Information}}

Area of equilateral triangle can also be found using formula:-

\sf{\dfrac{\sqrt{3}}{4}a^2}

Similar questions