English, asked by anshikagupta19jan200, 11 months ago

9. Find six rational numbers between -1/2 and 5/4..​..maths

Answers

Answered by MaheswariS
3

\textbf{Given:}

\dfrac{-1}{2}\;\text{and}\;\dfrac{5}{4}

\text{To find:}

\text{6 rational numbers between the given two rational numbers}

\textbf{Solutioin:}

\text{We apply average method to find 6 rational  numbers}

\text{Rational number between $\frac{-1}{2}$ and $\frac{5}{4}$}

c_1=\dfrac{\frac{-1}{2}+\frac{5}{4}}{2}

c_1=\dfrac{\frac{-2+5}{4}}{2}

c_1=\dfrac{\frac{3}{4}}{2}

c_1=\dfrac{3}{8}

\text{Rational number between $\frac{-1}{2}$ and $\frac{3}{8}$}

c_2=\dfrac{\frac{-1}{2}+\frac{3}{8}}{2}

c_2=\dfrac{\frac{-4+3}{8}}{2}

c_2=\dfrac{\frac{-1}{8}}{2}

\bf\c_2=\dfrac{-1}{16}c_2=\dfrac{-1}{16}

\text{Rational number between $\frac{-1}{2}$ and $\frac{-1}{16}$}

c_3=\dfrac{\frac{-1}{2}+\frac{-1}{16}}{2}

c_3=\dfrac{\frac{-8-1}{16}}{2}

c_3=\dfrac{\frac{-9}{16}}{2}

\,c_3=\dfrac{-9}{32}

\text{Rational number between $\frac{-1}{2}$ and $\frac{-9}{32}$}

c_4=\dfrac{\frac{-1}{2}+\frac{-9}{32}}{2}

c_4=\dfrac{\frac{-16-9}{32}}{2}

c_4=\dfrac{\frac{-25}{32}}{2}

\,c_4=\dfrac{-25}{64}

\text{Rational number between $\frac{-1}{2}$ and $\frac{-25}{64}$}

c_5=\dfrac{\frac{-1}{2}+\frac{-25}{64}}{2}

c_5=\dfrac{\frac{-32-25}{64}}{2}

c_5=\dfrac{\frac{-57}{64}}{2}

\,c_5=\dfrac{-57}{128}

\text{Rational number between $\frac{-1}{2}$ and $\frac{-57}{128}$}

c_6=\dfrac{\frac{-1}{2}+\frac{-57}{128}}{2}

c_6=\dfrac{\frac{-64-25}{128}}{2}

c_6=\dfrac{\frac{-89}{128}}{2}

\,c_6=\dfrac{-89}{256}

Answered by Anonymous
4

\textbf{Given:}

\dfrac{-1}{2}\;\text{and}\;\dfrac{5}{4}

\text{To find:}

\text{6 rational numbers between the given two rational numbers}

\textbf{Solutioin:}

\text{We apply average method to find 6 rational  numbers}

\text{Rational number between $\frac{-1}{2}$ and $\frac{5}{4}$}

c_1=\dfrac{\frac{-1}{2}+\frac{5}{4}}{2}

c_1=\dfrac{\frac{-2+5}{4}}{2}

c_1=\dfrac{\frac{3}{4}}{2}

c_1=\dfrac{3}{8}

\text{Rational number between $\frac{-1}{2}$ and $\frac{3}{8}$}

c_2=\dfrac{\frac{-1}{2}+\frac{3}{8}}{2}

c_2=\dfrac{\frac{-4+3}{8}}{2}

c_2=\dfrac{\frac{-1}{8}}{2}

\bf\c_2=\dfrac{-1}{16}c_2=\dfrac{-1}{16}

\text{Rational number between $\frac{-1}{2}$ and $\frac{-1}{16}$}

c_3=\dfrac{\frac{-1}{2}+\frac{-1}{16}}{2}

c_3=\dfrac{\frac{-8-1}{16}}{2}

c_3=\dfrac{\frac{-9}{16}}{2}

\,c_3=\dfrac{-9}{32}

\text{Rational number between $\frac{-1}{2}$ and $\frac{-9}{32}$}

c_4=\dfrac{\frac{-1}{2}+\frac{-9}{32}}{2}

c_4=\dfrac{\frac{-16-9}{32}}{2}

c_4=\dfrac{\frac{-25}{32}}{2}

\,c_4=\dfrac{-25}{64}

\text{Rational number between $\frac{-1}{2}$ and $\frac{-25}{64}$}

c_5=\dfrac{\frac{-1}{2}+\frac{-25}{64}}{2}

c_5=\dfrac{\frac{-32-25}{64}}{2}

c_5=\dfrac{\frac{-57}{64}}{2}

\,c_5=\dfrac{-57}{128}

\text{Rational number between $\frac{-1}{2}$ and $\frac{-57}{128}$}

c_6=\dfrac{\frac{-1}{2}+\frac{-57}{128}}{2}

c_6=\dfrac{\frac{-64-25}{128}}{2}

c_6=\dfrac{\frac{-89}{128}}{2}

\,c_6=\dfrac{-89}{256}

Similar questions