Math, asked by nikhiltiwarisdl, 16 days ago

9. Find the area of a circle of radius 14 cm (use π = 3.14)


Answers

Answered by fahims8080
4

Answer:

Area of circle = 615.44cm^{2}

Step-by-step explanation:

According to the information provided in the question it is given as

Radius  = 14 cm

(use π = 3.14)

We need to find the area of circle

The area of a circle is the space occupied by the circle in a two-dimensional plane. Alternatively, the space occupied within the boundary/circumference

By applying the formula

Area of circle = \pi r^{2}

A = 3.14 \times 14^{2} \\A =3.14 \times 14\times 14\\A = 3.14\times 196\\A= 615.44cm^{2}

Hence area of circle is 615.44cm^{2}

Answered by TheAestheticBoy
36

Question :-

  • Find the Area of Circle, whose Radius is 14 cm .

Answer :-

  • Area of Circle is 615.44 cm² .

 \rule {190pt}{2pt}

Given :-

  • Radius of Circle = 14 cm .

To Find :-

  • Area of Circle = ?

Solution :-

  • Here, Radius is given 14 cm . And, we have to find Area .

Formula Required :-

  •  \sf{ Area \: of \: Circle =  \pi  {r}^{2} } \\

Where ,

  • R denotes to the Radius .

By substituting the values :-

 \dag \:  \:  \sf{Area \: of  \: Circle =  \pi  {r}^{2} } \\

 \Longrightarrow \:  \:  \sf{Area \: of \: Circle \:  =  \:  3.14  \: \times  \:  ( {14})^{2}   } \\

 \Longrightarrow \: \: \sf{Area \: of \: Circle \:  =  \: 3.14 \:  \times \: 14 \: \times  \: 14} \\

 \Longrightarrow \: \: \sf{Area \: of \: Circle \:  =  \: 43.96 \: \times \:  14} \\

 \Longrightarrow \: \: \sf{Area \: of \: Circle \:  =  \: 615.44 \:  {cm}^{2} } \\

Hence :-

  • Area = 615.44 cm² .

 \rule {190pt}{4pt}

 \begin{gathered}\begin{gathered}\boxed{\begin{array}{c} \\ \underline{ { \pmb {\sf \red{ \dag \:  \: More \: Formulas \:  \:  \dag}}}} \\  \\  \\  \footnotesize \bigstar  \:  \sf{Area \: of \: Square = Side \times Side}  \\  \\  \\   \footnotesize\bigstar  \:  \sf{Area \: of \: Rectangle = Lenght \times Breadth} \\  \\  \\  \footnotesize \bigstar \:  \sf{Area \: of \: Triangle =  \frac{1}{2} \times Base \times Height } \\  \\  \\  \footnotesize \bigstar \:  \sf{Area \: of \: Parallelogram = Base \times Height} \\  \\  \\  \footnotesize \bigstar \:  \sf{Area \: of \: Trapezium =  \frac{1}{2} \times [ \: A + B \: ] \times Height } \\ \\ \\ \footnotesize \bigstar \: \sf {Area \: of \: Rhombus = \frac{1}{2} \times Diagonal \: 1 \times Diagonal \: 2}\end{array}}\end{gathered}\end{gathered}

Similar questions