Math, asked by anshmartin1805, 5 months ago

9) Find the compounded interest for six months on Rs.10,000 at an
annual rate of interest of 12% if the interest is compounded every 3
months.​

Answers

Answered by prince5132
27

 \pink{ \bold{ \frak{Given}}} \begin{cases} \sf Principal \:  (P)  = 10000 \\  \\  \sf \: Time \:  (n) = 6 \: months \\  \\ \sf Rate \:  (R) = 12 \: \% \\  \\ \sf Compound \:  Interest \: ( C.I) = compounded \: 3 \: months.\end{cases}  \\  \\

 \underline{\boldsymbol{According\: to \:the\: Question\:now :}} \\ \\

  : \implies \displaystyle \sf \: C . I= P \Bigg[ \bigg(1 + \dfrac{R}{100}\bigg)^{2} - 1\Bigg] \\  \\  \\

: \implies \displaystyle \sf \: C . I= 10000 \Bigg[ \bigg(1 + \dfrac{3}{100}\bigg)^{2 } - 1\Bigg] \\  \\  \\

: \implies \displaystyle \sf \: C . I= 10000 \Bigg[ \bigg(\dfrac{100+ 3}{100}\bigg)^{2} - 1\Bigg] \\  \\  \\

: \implies \displaystyle \sf \: C . I= 10000 \Bigg[ \bigg(\dfrac{103}{100}\bigg)^{2} - 1\Bigg] \\  \\  \\

: \implies \displaystyle \sf \: C . I= 10000 \Bigg[ \bigg(\dfrac{10609}{10000}\bigg) - 1\Bigg] \\  \\  \\

: \implies \displaystyle \sf \: C . I= 10000 \Bigg[ \dfrac{10609}{10000} - 1\Bigg] \\  \\  \\

: \implies \displaystyle \sf \: C . I= 10000 \Bigg[ \dfrac{10609- 10000}{10000} \Bigg] \\  \\  \\

: \implies \displaystyle \sf \: C . I= 10000 \Bigg[ \dfrac{609 }{10000} \Bigg] \\  \\  \\

: \implies \displaystyle \sf \: C . I= 10000  \times  \frac{609}{10000}  \\  \\  \\

: \implies \underline{ \boxed{ \displaystyle \sf \: C . I=609}}

Answered by rocky200216
31

\huge\bf{\underline{\underline{\gray{GIVEN:-}}}}

  • \bf\blue{Principle\:(P)} = Rs.10,000

  • \bf\blue{Time\:(T)} = 6 months = \bf{\dfrac{1}{2}\:year}

  • \bf\blue{Rate\:(R)} = 12% per annum

☯︎︎︎︎ Compounded every 3 months .

  • \bf\blue{n} = 3

 \\

\huge\bf{\underline{\underline{\gray{TO\:FIND:-}}}}

  • Compound Interest .

 \\

\huge\bf{\underline{\underline{\gray{SOLUTION:-}}}}

We know that,

{\color{aqua}\bigstar}\:\bf{\red{\overbrace{\underbrace{\green{Amount\:(A)\:=\:P\:\Big(\:1\:+\:\dfrac{R}{n}\:\Big)^{n\:T}\:}}}}} \\

 \\ \bf{\implies\:Amount\:(A)\:=\:10,000\times\:\Big(\:1\:+\:\dfrac{12/100}{4}\:\Big)^{3\times{\dfrac{1}{2}}}\:} \\

 \\ \bf{\implies\:Amount\:(A)\:=\:10,000\times\:\Big(\:1\:+\:\dfrac{0.12}{4}\:\Big)^{3\times{\dfrac{1}{2}}}\:} \\

 \\ \bf{\implies\:Amount\:(A)\:=\:10,000\times\:\Big(\:1\:+\:0.03\:\Big)^{3\times{\dfrac{1}{2}}}\:} \\

 \\ \bf{\implies\:Amount\:(A)\:=\:10,000\times\:\Big(\:1.03\:\Big)^{3\times{\dfrac{1}{2}}}\:} \\

 \\ \bf{\implies\:Amount\:(A)\:=\:10,000\times\:\Big(\:(1.03)^{\dfrac{1}{2}}\:\Big)^3\:} \\

 \\ \bf{\implies\:Amount\:(A)\:=\:10,000\times\:\Big(\:1.01489\:\Big)^3\:} \\

 \\ \\ \bf{\implies\:Amount\:(A)\:=\:10,000\times{1.045335}\:} \\

 \\ \\ \bf\orange{\implies\:Amount\:(A)\:=\:Rs.10,453.35\:} \\

_ _ _ _ _ _ _ _ _ _

We know that,

\purple\bigstar\:\bf{\pink{\overbrace{\underbrace{\blue{Compound\:Interest\:(C.I)\:=\:Amount\:-\:Principle\:}}}}} \\

 \\ \sf{\implies\:Compound\:Interest\:(C.I)\:=\:10,453.35\:-\:10,000\:} \\

 \\\sf\gray{\implies\:Compound\:Interest\:(C.I)\:=\:Rs.453.35\:} \\

 \\ \huge{\color{orange}\therefore} The Compound Interest is 'Rs.453.35' .

Similar questions