9. Find the coordinates of the points which divide the line segment joining A(-2, 2) and
B(2,8) into four equal parts.
Answers
Step-by-step explanation:
Find the coordinates of the points which divide the line segment joining A(-2, 2) and
B(2,8) into four equal parts.
Answer:
❍ Let AB be the line segment, with co – ordinates A(–2, 2) and point B(2, 8). And, x, y and z points are dividing the line segment AB, into four equal parts respectively.
⠀
M I D – P O I N T :
We'll use Mid – point formula, this formula is use to calculate the co – ordinates of points which divides the line segment. And, the Mid – point formula is given by :
[tex]\bf{\dag}\;\;\boxed{\sf{\bigg(\dfrac{x_1 + x_2}{2},\;\dfrac{y_1 + y_2}{2}\bigg)}}† ( 2x 1 +x 2 , 2y1+y2\rule{100px}{.3ex}[\tex]
⠀⠀⠀⠀⠀
The mid dividing point is 'y'. So, the co – ordinates of y :
[tex]\begin{gathered}:\implies\sf\bigg(\dfrac{-2 + 2}{2}, \;\dfrac{2 + 8}{2}\bigg) \\\\\\:\implies\sf \bigg(\dfrac{0}{2}, \;\cancel\dfrac{10}{2} \bigg) \\\\\\:\implies{\underline{\boxed{\frak{\Big(0, 5\Big)}}}}\end{gathered} [\tex]
:⟹( 2−2+2 , 22+8 ):⟹( 20, 210 ):⟹ (0,5)
And Now, co – ordinates of point 'x' :
[tex]\begin{gathered}:\implies\sf \bigg(\dfrac{-2 + 0}{\;2},\; \dfrac{2+5}{2}\bigg) \\\\\\:\implies\sf \bigg(\cancel\dfrac{-2}{\;2},\; \dfrac{7}{2}\bigg) \\\\\\:\implies{\underline{\boxed{\frak{\Big(-1,\;\dfrac{7}{2}\bigg)}}}}\end{gathered} [\tex]
:⟹(
2
−2+0 , 22+5 ):⟹( 2−2 , 27 ):⟹ (−1, 27
⠀⠀⠀⠀⠀
Similarly, co – ordinates of point 'z' :
[tex]\begin{gathered}:\implies\sf \bigg(\dfrac{0 +2}{2},\;\dfrac{5+8}{2}\bigg) \\\\\\:\implies\sf \bigg(\dfrac{2}{2}, \dfrac{13}{2} \bigg) \\\\\\:\implies{\underline{\boxed{\frak{\bigg(1,\;\dfrac{13}{2}\bigg)}}}}\end{gathered} [\tex]
:⟹(
2
0+2 , 25+8 ):⟹( 22 , 213 ):⟹ (1, 213 )
[tex]\therefore{\underline{\sf{Hence,\;the\; coordinates \;of\; dividing\; points\;are\; \bf{(0,5)\;,\bigg(-1,\;\dfrac{7}{2}\bigg)\;\&\;\bigg(1,\dfrac{13}{2}\bigg)}.}}}∴ [\tex]
Hence,thecoordinatesofdividingpointsare(0,5),(−1, 27 )&(1, 213 ).
⠀100% correct answer
Hope it's helpful ✌️✌️
Please mark me brilliance