Math, asked by r95750687, 6 days ago

9. Find the volume, curved surface area and the total surface area of a cone whose height is 6 cm and slant height 10 cm. (Take pi = 3.14 )​

Attachments:

Answers

Answered by Itzheartcracer
1

Given :-

Height of cone = 6 cm

Slant height = 10 cm

To Find :-

Volume

CSA

TSA

Solution :-

{\large{\boxed{\underline{\pmb{\sf{l^2=r^2+h^2}}}}}}

\rm\dashrightarrow (10)^2=r^2+(6)^2

\rm\dashrightarrow 100=r^2+36

\rm\dashrightarrow 100-36=r^2

\rm\dashrightarrow 64=r^2

\rm\dashrightarrow\sqrt{64}=r

\rm\dashrightarrow 8=r

Now

We know that

{\large{\boxed{\underline{\pmb{\tt{Volume_{(Cone)}=\dfrac{1}{3}\pi r^2h}}}}}}

\rm\dashrightarrow Volume = \dfrac{1}{3}\times 3.14\times (8)^2\times6

\rm\dashrightarrow Volume=\dfrac{1}{3}\times 3.14\times 64\times6

\rm\dashrightarrow Volume=\dfrac{1}{\cancel{3}}\times 3.14\times 64\times\cancel{6}

\rm\dashrightarrow Volume=3.14\times64\times2

\rm\dashrightarrow Volume=401.92\;cm^3

Now

{\large{\boxed{\underline{\pmb{\tt{CSA_{(Cone)}=\pi rl}}}}}}

\rm\dashrightarrow CSA=3.14\times8\times10

\rm\dashrightarrow CSA=3.14\times80

\rm\dashrightarrow CSA=251.2\;cm^2

Now

{\large{\boxed{\underline{\pmb{\tt{TSA_{(Cone)}=\pi r(l+r)}}}}}}

\rm\dashrightarrow TSA=3.14\times 8(10+8)

\rm\dashrightarrow TSA=25.12\times18

\rm\dashrightarrow TSA=452.16 \;cm^2

Therefore

Volume of cone is 401.92 cm³

CSA of cone is 251.2 cm² &

TSA of cone is 452.16 cm²

Answered by mayursagare873
0

Find the volume, curved surface area and the total surface area of a cone whose height is 6 cm

Attachments:
Similar questions