Math, asked by ajay9084182632, 9 months ago

9.Find the zeroes of the quadratic polynomial √3x2 -8x+4√3 and verify the relationship between zeroes and its coefficient.

Answers

Answered by CharmingPrince
16

{\huge{\underline{\underline{\sf {\mathfrak{Answer}}}}}}

{\underline{\underline{\rm {Given:}}}}

  • p(x) = \sqrt3x^2-8x+4\sqrt3
  • Zeroes =?

{\underline{\underline{\rm {Finding \ zeroes:}}}}

⠀⠀⠀\sqrt3x^2-8x+4\sqrt3=0

⠀⠀⠀\sqrt3x^2 -6x - 2x + 4\sqrt3=0

⠀⠀⠀\sqrt3x^2 -6x -2x + 4\sqrt3 =0

⠀⠀⠀\sqrt3x (x - 2\sqrt3 )-2(x - 2\sqrt3 ) = 0

⠀⠀⠀(x - 2\sqrt3)(\sqrt3x - 2)=0

⠀⠀⠀x-2\sqrt3 = 0 \; \; \; \; \; \sqrt3x - 2 = 0

\boxed{\implies{\boxed{x = 2\sqrt3 \ or \ x = \dfrac{2}{\sqrt3}}}}

\underline{\underline{\rm{Verification: }}}

⠀⠀⠀ Sum \ of \ zeroes = 2\sqrt3 + \dfrac{2}{\sqrt3}

⠀⠀⠀Sum \ of \ zeroes = \dfrac{8}{\sqrt3}

\boxed{\implies{\boxed{Sum \ of \ zeroes = \dfrac{-Coefficient \ of \ x}{Coefficient \ of x^2}}}}

⠀⠀⠀Product \ of zeroes = 2\sqrt3 \times \dfrac{2}{\sqrt3}

⠀⠀⠀Product \ of \ zeroes = 4

\boxed{\implies{\boxed{Product \ of \ zeroes = \dfrac{Constant \ term }{Coefficient \ of \ x^2}}}}

Answered by ns8390677
0

4

Step-by-step explanation:

2+2=4

3+3=6

4+4=8

5+5=10

6+6=12

Similar questions