Math, asked by devisusma875, 3 months ago

9.
For what value(s) of k, the quadratic equation x²-2(k+1)x+k²=0 has equal roots​

Answers

Answered by amansharma264
9

EXPLANATION.

Quadratic equation.

⇒ x² - 2(k + 1)x + k² = 0.

As we know that,

D = Discriminant Or b² - 4ac.

⇒ [-2(k + 1)²] - 4(1)(k²) = 0.

⇒ 4(k + 1)² - 4k² = 0.

⇒ 4(k² + 1 + 2k) - 4k² = 0.

⇒ 4k² + 4 + 8k - 4k² = 0.

⇒ 4 + 8k = 0.

⇒ 8k = -4.

⇒ k = -4/8.

⇒ k = -1/2.

                                                                                                                   

MORE INFORMATION.

Nature of the factors of the quadratic expression.

(1) = Real and different, if b² - 4ac > 0.

(2) = Rational and different, if b² - 4ac is a perfect square.

(3) = Real and equal, if b² - 4ac = 0.

(4) = If D < 0 Roots are imaginary and unequal or complex conjugate.                                                                                                                                                                                                                                                                                                                                                                                                                                                                              

Answered by CopyThat
29

Answer:

  • k = -1/2

Step-by-step explanation:

Given

  • x² - 2(k + 1)x + k² = 0

To find

  • The value of k for which the quadratic equation has equal roots.

Solution

The discriminant of a quadratic equation tells us whether there are two solutions, one solution, or no solutions.

Discriminant = b² - 4ac = 0

(Since they are equal roots, it is equal to 0)

Quadratic formula = ax² + bx + c = 0

Where: a = 1 , b = 2 (k + 1) , c = k²

  • (-2(k + 1)²) - 4(1)(k²) = 0
  • 4(k² + 1 + 2k) - 4k² = 0
  • 4k² + 4 + 8k - 4k² = 0
  • 4 + 8k = 0
  • 8k = -4
  • k = -4/8
  • k = -1/2

Hence, the value of k is -1/2

Similar questions