Math, asked by nidhi1234569, 1 year ago

9.
Given that 5a - 3b = 16 and ab= 15, find the value of
25a2 + 9b2​

Answers

Answered by jainaadi0107
12

Answer:

(5a -3b)^2=16^2

( {x  -  y})^{2}  =  {x}^{2}  +  {y}^{2}  -  2xy

(5a)^2+ (3b)^2 -2*5a*3b=256

25a^2+9b^2-2(15)=256(adding value of ab)

25a^2+9b^2-30=256

25a^2+9b^2=256-30

25a^2+9b^2=226

Answered by Himanshu8715
5

We'll use the identity (a^2+b^2)= (a+b)(a^2-ab+b^2).

so, (5a)^2+(3b)^2= (5a+3b)(25a^2-15+9b^2).

=125a^3-75a+45ab^2+75a^2b-45b+27b^3.

Hope it helps..

Similar questions