9 identity used in 8.4 class 10
Answers
Answer:
FEW BASICS: (Mentally verify these)
1) sin A x cosec A = 1
2) cos A x sec A = 1
3) cosec A x tan A = sec A
4) sec A x cot A = cosec A
5) sin A x sec A = tan A
6) cos A x cosec A = cot A
Identities:
2) sin2A + cos2A =1 Also: sin2A = 1 - cos2A; cos2A = 1 - sin2A
3) tan2A + 1 = sec2A Dividing all of 2) by cos2A we get this.
4) 1 + cot2A = cosec2A Dividing all of 2) by sin2A we get this
From3) we also get: sec2A - 1 = tan2A and sec2A - tan2A = 1
From4) we also get: cosec2A - 1 = cot2A and cosec2A - cot2A = 1
EXAMPLES:
Example 13: Prove that sec A(1 - sin A)(sec A + tan A) = 1
Solution:
L. H. S. = sec A(1 - sin A)(sec A + tan A)
= (sec A - tan A) (sec A + tan A)
= sec2 A - tan2 A
= 1 = R.H.S
Example 14: Prove
EXERCISE 8.4
or
Note_these simple manipulations
01)
_____________________________________________________
02)
Multiply Nr and Dr. by (1 + sin A)
_____________________________________________________