Math, asked by nihithaitha22, 1 month ago

9. If 4-i3 is a root of quadratic equation, then the equation is 1) x2 - 8x + 13 = 0 2) x2 – 8x + 19 = 0 3) x2 – 8x - 13 = 0 4) x2 - 8x -19 = 0 answer is what​

Answers

Answered by Battelgroundsplayer
0

Answer:

Complete \: \:  step \: \:  by \: \:  step \: \:  explanation</p><p>We \:  \:  know  \:  \: that \:  \:  if \:  \:  a \:  \:  polynomial \:  \:  equation \:  \: (with \:  \:  real \:  \:  coefficients) \:  \:  has \:  \:  a  \: complex \:  \:  root, \:  \:  then \:  \:  the \:  \:  complex  \:  \: conjugate \:  \:  of  \:  \: thwe \:  \:  root  \:  \: is \:  \:  also  \:  \: the  \:  \: solution \:  \:  of  \:  \: the \:  \:  equation. \:  \:  Since \:  \:  the \:  \:  quadratic \:  \:  equation \:  \:  has \:  \:  4−i3–√4−i3 \:  \:  as \:  \:  one  \:  \: of  \:  \: the roots, the other root of the equation is 4−i3–√¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯=4+i3–√4−i3¯=4+i3</p><p>Hence, we have</p><p>Sum of roots =4+i3–√+4−i3–√=8=4+i3+4−i3=8</p><p>Product of roots =(4+i3–√)(4−i3–√)=42−(i3–√)2=42+3=19=(4+i3)(4−i3)=42−(i3)2=42+3=19</p><p>We know that a quadratic equation whose sum of roots is “a” and product of roots is “b” is x2−ax+0x2−ax+0 .</p><p>Hence the required quadratic equation is x2−8x+19=0x2−8x+19=0</p><p>Hence option bb is correct.</p><p></p><p>Note: Verification:</p><p>We can verify the correctness of our solution by checking that 4−i3–√4−i3 is a root of the equation.</p><p>We have</p><p> (4−i3–√)2=16−3−83–√i=13−83–√(4−i3)2=16−3−83i=13−83</p><p>Hence, we have</p><p> x2−8x+9=(4−i3–√)2−8(4−i3–√)+19=13−83–√i−32+8i3–√+19=0</p><p></p><p></p><p>

here is your full answer

Step-by-step explanation:

please \:  \: mark \:  \: me \:  \: as \:  \: brainlist

Similar questions