9. If 7 sin2θ+ cos2θ=44, show that tan=1/√3
Answers
Answered by
35
Given :
We Know that :
Hence Proved.
Answered by
1
Answer:
{\bold{\underline{\underline{Solution:}}}}
Given :
7\sin^{2}\theta+3\cos^{2}\theta=4
\implies7\sin^{2}\theta+3\cos^{2}\theta=4\\\\ \implies7(1-cos^{2}\theta)+3\:cos^{2} \theta=4\\\\ \implies7-7\:cos^{2}\theta+3\:cos^{2} \theta=4\\\\ \implies7-4\:cos^{2}\theta=4\\\\ \implies4\:cos^{2}\theta=3\\\\ \implies\cos^{2}\theta =\frac{3}{4}\:\:.....(1)\\\\ \implies1-sin^{2}\theta=\frac{3}{4}\\\\\implies\:sin^{2}\theta=1-\frac{3}{4}=\frac{1}{4}\:\:\:.....(2)
We Know that :
\bold{\boxed{{\tan}^{2}\theta =</p><p>\frac{{\sin}^{2}\theta}{{\cos}^{2}\theta}}}
\implies \sqrt{\frac{\frac{1}{4}}{\frac{3}{4}}}
\implies\sqrt{\frac{1}{3}}=\frac{1}{\sqrt{3}}</p><p>
Hence Proved
Step-by-step explanation:
Similar questions
English,
5 months ago
English,
5 months ago
Math,
10 months ago
Business Studies,
10 months ago
English,
1 year ago