Math, asked by ShaswatNarayan, 1 year ago

9. If 7 sin2

θ+ cos2

θ=44, show that tan=1/√3

Answers

Answered by aquialaska
11

Answer:

Given:

7sin^2\,\theta+3cos^2\,\theta=4

To show: tan\,\theta=\frac{1}{\sqrt{3}}

Consider,

7sin^2\,\theta+3cos^2\,\theta=4

4sin^2\,\theta+3sin^2\,\theta+3cos^2\,\theta=4

4sin^2\,\theta+3(sin^2\,\theta+cos^2\,\theta)=4

4sin^2\,\theta+3(1)=4

4sin^2\,\theta=4-3

sin^2\,\theta=\frac{1}{4}

sin\,\theta=\sqrt{\frac{1}{4}}

sin\,\theta=\frac{1}{2}

We know that,

sin\,\theta=\frac{Opposite}{Hypotenuse}=\frac{1}{2}

from attached figure

XZ² = XY² - YZ²  ( Pythagoras theorem )

XZ² = 2² - 1²

XZ² = 4 - 1

XZ² = 3

XZ = √3

tan\,\theta=\frac{Opposite}{Adjacent}=\frac{1}{\sqrt{3}}

Hence Proved.

Attachments:
Answered by believerofnone
3

Answer:

The correct question is  :   7Sin^2A+ 3cos^2A = 4  , prove tan = 1/root3

Step-by-step explanation:

Given that:

7 Sin^2A + 3 cos^2A = 4

On dividing by cos^2A both sides

7Tan^2A + 3 = 4/Cos^A

7Tan^2A + 3 = 4 Sec^A

7Tan^2A + 3 = 4(1+Tan^A)

7Tan^2A + 3 = 4 + 4Tan^A

3Tant^A = 1

Tan^A = 1/3

TanA = 1/Root3

Hence Proved  

PLZ RATE !

Similar questions