9 If a = 1 + log x (yz), b = 1 + log y (zx) and c = 1 + log z (xy) , then show that ab + bc + ca = abc.
Answers
Answer:
See the explanation
Step-by-step explanation:
Given,
Hence proved
a=1+\log_x(yz),b=1+\log_y(xz),c=1+\log_z(xy)a=1+log
x
(yz),b=1+log
y
(xz),c=1+log
z
(xy)
\Rightarrow a=\log_x(x)+\log_x(yz),b=\log_y(y)+\log_y(xz),c=\log_z(z)+\log_z(xy)⇒a=log
x
(x)+log
x
(yz),b=log
y
(y)+log
y
(xz),c=log
z
(z)+log
z
(xy)
\boxed{\because \log_aa=1}
∵log
a
a=1
\Rightarrow a=\log_x(xyz),b=\log_y(xyz),c=\log_z(xyz)⇒a=log
x
(xyz),b=log
y
(xyz),c=log
z
(xyz)
\boxed{\because \log_ax+\log_ay=\log_z(xy)}
∵log
a
x+log
a
y=log
z
(xy)
\Rightarrow \dfrac{1}{a}=\dfrac{1}{\log_x(xyz)}=\log_{xyz}(x),\dfrac{1}{b}=\dfrac{1}{\log_y(xyz)}=\log_{xyz}(y),\dfrac{1}{c}=\dfrac{1}{\log_z(xyz)}=\log_{xyz}(z)⇒
a
1
=
log
x
(xyz)
1
=log
xyz
(x),
b
1
=
log
y
(xyz)
1
=log
xyz
(y),
c
1
=
log
z
(xyz)
1
=log
xyz
(z)
\boxed{\because \log_ab=\dfrac{1}{\log_ba}}
∵log
a
b=
log
b
a
1
\begin{gathered}\Rightarrow \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\log_{xyz}(x)+\log_{xyz}(y)+\log_{xyz}(z)=\log_{xyz}(xyz)=1\\\\\Rightarrow \dfrac{bc+ca+ab}{abc}=1\\\\\Rightarrow ab+bc+ca=abc\end{gathered}
⇒
a
1
+
b
1
+
c
1
=log
xyz
(x)+log
xyz
(y)+log
xyz
(z)=log
xyz
(xyz)=1
⇒
abc
bc+ca+ab
=1
⇒ab+bc+ca=abc
Hence proved