9. If A + B = 225º and none of A and B is an
integral multiple of π, prove that
(1 + cot A) (1 + cot B) = 2 cot A cot B (or)
[cot A_1+cot A]
[cot B_
1+cot B]=1/2
Answers
Answered by
5
Correct Question:-
If A + B = 225 then prove that ( 1 -cotA )( 1 - cotB ) = 2
Formulae to know:-
- cot(A + B ) = cotBcotA - 1 / cotB + cotA
cot 225 ° = cot (180+ 45)
cot225° = cot45°
- cot225° = 1
Solution:-
A + B = 225
Taking "cot" on both sides
cot ( A + B ) = cot225
cotB cotA - 1 / cotB + cotA = 1
cotBcotA -1 = cotB + cotA
cotB cotA - cotB - cotA = 1
- cotA - cotB + cotA cotB = 1
Adding "1" on both sides
1 - cotA - cotB + cotA cotB = 1 + 1
(1 - cotA ) -cotB ( 1 - cotA ) = 2
(1 - cotA) ( 1 - cotB ) = 2
Hence proved
Know more :-
Trigon metric Identities
sin²θ + cos²θ = 1
sec²θ - tan²θ = 1
csc²θ - cot²θ = 1
Trigometric relations
sinθ = 1/cscθ
cosθ = 1 /secθ
tanθ = 1/cotθ
tanθ = sinθ/cosθ
cotθ = cosθ/sinθ
Trigonmetric ratios
sinθ = opp/hyp
cosθ = adj/hyp
tanθ = opp/adj
cotθ = adj/opp
cscθ = hyp/opp
secθ = hyp/adj
Similar questions