Math, asked by ramratanteligmail, 8 months ago

9. If alfa and Bita are the zeroes of polynomial
p (x) = x2 - 7x + 10, find
find the
the quadratic
polynomial with zeroes (-alfa) and (-bita).

please don't give unusefull message​

Answers

Answered by abdussamad7643
1

Given :

If α & β are the zeroes of the polynomial, x² - 7x + 10 = 0 , then

Find α³ + β³

Solution :

We know that,

⇒ (a³ + b³) = (a + b) (a² - ab + b²)

_

We also know that,

For a quadratic equation of the form :

ax² + bx + c = 0,.

Here, a = 1 , b = -7 , c = 10

Sum of the zeroes = α + β = \frac{-b}{a}

a

−b

Product of the zeroes = αβ = \frac{c}{a}

a

c

⇒ (a³ + b³) = (a + b) (a² - ab + b²)

= (a + b) (a² + 2ab - 3ab + b²)

= (a + b) [ (a² + 2ab + b²) - 3ab ]

⇒ (a + b) [(a + b)² - 3ab]

Hence,

⇒ α³ + β³ = ( \frac{-b}{a} )[(\frac{-b}{a} )^2 - 3(\frac{c}{a})](

a

−b

)[(

a

−b

)

2

−3(

a

c

)]

⇒(\frac{-(-7)}{1})[(\frac{-(-7)}{1})^2 - 3(\frac{10}{1})] = (7)[(7)^2 - 3(10)](

1

−(−7)

)[(

1

−(−7)

)

2

−3(

1

10

)]=(7)[(7)

2

−3(10)]

⇒7(49 - 30) = 7 × 19 = 133

∴ α³ + β³ = 133

Similar questions