Math, asked by svesh2018nambair, 1 year ago

9. If α and β are the zeros of the polynomial px2 + qx +r then find the values of a) 1/∝+ 1/β ii) α/β+ β/α

Answers

Answered by aditya26701
2

the answers of your question is in the pic which I attached with

Attachments:
Answered by Anonymous
3

Step-by-step explanation:

\underline{given}

 \alpha  \: and \:  \beta

 \alpha  \: and \:  \beta are \: the \: zeroes \: of \: px {}^{2}  - qx  + r

\boxed{Tofind}

\boxed{(1/a+1/b)and(a/b+b/a}

 \alpha  +  \beta  =   \frac{ - b}{a}

a + b =  \frac{ - ( - q)}{p}

 \alpha  +  \beta  =  \frac{q}{p} .....(1)

 \alpha  \beta  =  \frac{c}{a}

 \alpha  \beta  =  \frac{r}{p} .....(2)

now solving

\underline{1/a+1/b}

 \frac{ \alpha  +  \beta }{ \alpha  \beta }

putting the value of (1) and (2) we get

 =  \frac{ \frac{q}{p} }{ \frac{r}{p} }

 =  \frac{q}{r}

now solving

\boxed{a/b+b/a}

 \frac{ \alpha }{ \beta }  +  \frac{ \beta }{ \alpha }

 =  \frac{ \alpha  {}^{2}  +  \beta  {}^{2} }{ \alpha  \beta } ....(3)

using (a+b)^2

(a + b) {}^{2}  = a {}^{2}  + b {}^{2}  + 2ab

(a + b) {}^{2}  - 2ab = a {}^{2}  + b {}^{2}

  • now using (1) and (2) we in the above identity

we get

( \frac{q}{p} ) {}^{2}  - 2( \frac{r}{p} ) = a {}^{2}  + b {}^{2}

 =  \frac{q {}^{2} }{p {}^{2} }  -  \frac{2r}{p}

 \frac{q {}^{2}p - 2p {}^{2} r  }{p {}^{2} }

 =  \frac{p(q {}^{2} - 2pr) }{p {}^{2} }

 =  \frac{q { }^{2} - 2pr }{p} .....(4)

now substituiting the value of (4) and (2) in (3) we get

 =  \frac{ \frac{q {}^{2}  - 2pr}{p} }{ \frac{r}{p} }

 =  \frac{q {}^{2} - 2pr }{r}

Similar questions