Math, asked by Anonymous, 10 months ago


9. If ∝ and are two zeroes of the polynomial kx

2 + 4 x + 4 such that

2 +
= 24 , then find the value of k .
plzz ans it fast .i will u brainliest​

Answers

Answered by tanu20158922
1

Step-by-step explanation:

According to the question,

α and β are the zeroes of polynomial kx² + 4x + 4

a = k

-b = -4

c = 4

α + β = -b/a = -4/k

αβ = c/a = 4/k

Given => α² + β² = 24

=> (α + β)² - 2αβ = 24

=> (-4/k)² - 2×4/k = 24

=> 16/k² - 8/k = 24

=> 16 - 8k = 24k²

=> 24k² + 8k - 16 = 0

=> 3k² + k - 2 = 0

=> 3k² + 3k - 2k - 2 = 0

=> 3k(k + 1) - 2(k + 1) = 0

=> (3k - 2)(k + 1) = 0

=> k = 2/3 or -1

Answered by Anonymous
2

{\green {\boxed {\mathtt {✓verified\:answer}}}}

since \:  \alpha \: and \:  \beta  \: are \: the \: zeros \: of \: polynomial \: p(x) = k {x}  + 4x + 4 \: then \\  \alpha  +  \beta  =  \frac{ - b}{a}  =  \frac{ - 4}{k}  \: and \\  \alpha  \beta  =  \frac{c}{a}  =  \frac{4}{k} \:  \\ it \: is \: given \: that \:  { \alpha }^{2}  +  { \beta }^{2}  = 24 \\  \therefore( \alpha  +  \beta )^{2}  - 2 \alpha  \beta  = 24 \\ ( {\frac{ - 4}{k} })^{2}  - 2 ({\frac{4}{k} }) {}^{2}  = 24 \\   \frac{16}{{k} ^{2} } -  \frac{8}{k}  = 24 \\  \frac{16 - 8k}{k {}^{2} }  = 24 \\ 16 - 8k = 24  {k}^{2}   \\ 24 {k}^{2}  + 8k - 16 = 0 \\ 8(3 {k}^{2}  + k - 16) = 0 \\ 3k {}^{2}  + k - 2 = 0 \\ 3k {}^{2}  + 3k - 2k - 2 = 0 \\ 3k(k + 1) - 2(k + 1) = 0 \\ (k + 1) = 0 \: or \:( 3k - 2 )= 0 \\  \therefore \: k =  - 1 \: or \: k =  \frac{2}{3}

hope it helps you....

Similar questions