Math, asked by preetchauha711, 9 months ago

9) If cos A = 4/5, then tan A=?​

Answers

Answered by Anonymous
2
cos A = 4/5

=> tan A = 3/4
Answered by SarcasticL0ve
9

GiVen:-

  • cosA = \sf \dfrac{4}{5}

To find:-

  • Value of tanA = ?

SoluTion:-

GivEn that,

→ cosA = \sf \dfrac{4}{5} = \dfrac{B}{H}

Therefore,

Base (B) = 4 and Hypotenuse (H) = 5

UsiNg PyThagOraS ThEoreM :-

★ H² = P² + B² ★

:\implies P² = H² - B²

:\implies P² = (5)² - (4)²

:\implies P² = 25 - 16

:\implies P² = 9

\small\sf\;\;\dag\;{\underline{Taking\;sqrt\;both\;sides}

:\implies  \sqrt{P^2} = \sqrt{9}

:\implies\bf \red{P = 3}

Therefore,

★ tanA = \sf \dfrac{P}{B} = \dfrac{3}{4}

Similarly, we can find all trigonometric ratio from given one.

\rule{150}{4}

★ 2nd Method:-

cosA = \sf \dfrac{4}{5}

\therefore secA =  \frac{1}{ \frac{4}{5}}

\implies secA = \sf \dfrac{5}{4}

As we know the identity:-

{\underline{\boxed{\bf{\blue{ \sec^2{ \theta} = \tan^2{ \theta} + 1}}}}}

Here,  \theta = A

\implies\sf {\underline{ \sec^2{A} = \tan^2{A} + 1}}

\implies\sf \bigg( \dfrac{5}{4} \bigg)^2 = \tan^2{A} + 1

\implies\sf \dfrac{25}{16} = \tan^2{A} + 1

\implies\sf \dfrac{25}{16} - 1  = \tan^2{A}

\implies\sf \dfrac{25 - 16}{16} = \tan^2{A}

\implies\sf \dfrac{9}{16} = \tan^2{A}

\small\sf\;\;\dag\;{\underline{Taking\;sqrt\;both\;sides}

\implies\sf \sqrt{ \dfrac{9}{16}} = \sqrt{ \tan^2{A}}

\implies\sf \dfrac{3}{4} = \tan{A}

\implies{\underline{\boxed{\bf{\blue{ \tan{A} = \dfrac{3}{4}}}}}}

\dag\;{\underline{\underline{\bf{\pink{Hence\;SolvEd!!}}}}}

\rule{150}{4}

Similar questions