9. If p th term of an A.P. is 1/q and qth term is 1/p, prove that the sum
of the first pq terms is 1/2 [pq+1]
Hint : First find the values of a and d. Use the formula :
tn = a + (n − 1)d (ii) Sn = {2a + (n − 1) d)
Answers
Answered by
32
Solution :-
p th term of an AP = 1/q
Using n th term of an AP formula
q that term of an AP = 1/p
Using n th term of an AP formula
From eq(1) and eq(2)
⇒ aq + pqd - qd = ap + pqd - pd
⇒ aq - qd = ap - pd
⇒ aq - ap = qd - pd
⇒ a(q - p) = d(q - p)
⇒ a/d = (q - p) /(q - p)
⇒ a/d = 1
⇒ a = d
Substituting a = d in eq(2)
⇒ ap + pqd - pd = 1
⇒ pd + pqd - pd = 1
⇒ pqd = 1
Substituting d = a
⇒ pqa = 1
⇒ a = 1/pq
Sum of first pq terms = Sₙ = n/2 [2a + (n - 1)d]
[ Because a = d ]
[ Because a = 1/pq ]
Hence proved
Anonymous:
Awesome answer keep it up :)
Similar questions