Math, asked by gatikbhatia2010, 11 months ago

9. if tan x = a / b, the (cOS X + sin x) /
(COS X - sin x) = ?​

Answers

Answered by ritu16829
6

Answer:

hey mate ❤️ ❤️

plz refer to pic

hope it works ❤️

plz mark it as brainliest answer

Attachments:
Answered by Anonymous
11

Answer :-

( cos x + sin x) / ( cos x - sin x) = ( b + a ) / ( b - a )

Solution :-

tan x = a/b = P / B

Here,

  • P = a
  • B = b

Finding hypotenuse ( H )

By pythagoras theorem

==> H² = P² + B²

==> H² = a² + b²

==> H = √( a² + b² )

Finding cos x and sin x

sin x = P / H

= a / √( a² + b² )

cos x = B / H

= b / √( a² + b² )

Finding ( cos x + sin x) / (cos x - sin x)

 \rm \dfrac{cosx + sinx}{cosx - sinx}  =  \dfrac{ \dfrac{b}{ \sqrt{ {a}^{2} +  {b}^{2} }} +  \dfrac{a}{ \sqrt{ {a}^{2} +  {b}^{2}  } }  }{ \dfrac{b}{ \sqrt{ {a}^{2}  +  {b}^{2} } }  -  \dfrac{a}{ \sqrt{ {a}^{2} +  {b}^{2}  } }  }

 \rm  =  \dfrac{ \dfrac{b+ a}{ \sqrt{ {a}^{2}  +  {b}^{2} }} }{ \dfrac{b - a}{ \sqrt{ {a}^{2}  +  {b}^{2} } }  }

 \rm  =  \dfrac{ b + a }{b - a }

Therefore the required answer is found.

Similar questions