Math, asked by mohitkukreja9535, 10 months ago

9)If the distance between the points (8,p) and (4,3) is 5 units, then the value of p is *

Answers

Answered by Skyllen
16

 \bf  \large \underline{ \purple{GIVEN}}

  • Given points: (8,p) and (4,3)
  • Distance between the points is 5 units.

 \: \bf  \large \underline{ \purple{SOLUTION}}

Distance formula:

  \to {\blue{ \sf\sqrt{( x_{2} -x_{1}) {}^{2}  + (y_{2} - y_{1} ) {}^{2} } }}

We need to find the value of p,

ㅤㅤㅤ☛By using distance formula,

 \sf\sqrt{( 4 -8) {}^{2}  + (3 - p ) {}^{2} }  = 5

 \sf  \sqrt{ ( - 4) {}^{2} + 9 + p {}^{2} - 6p  }  = 5.....( \because \: a {}^{2}  - b {}^{2}  = a {}^{2}  + b {}^{2}  - 2ab)

 \sf \sqrt{16 + 9 + p {}^{2}  - 6p}  = 5

 \sf( \sqrt{25 + p {}^{2} - 6p } ) {}^{2}= (5) {}^{2}.....( \: squaring \: both \: sides)

 \sf \: p {}^{2}  - 6p + 25 = 25

 \sf \: p {}^{2}  - 6p = 0

 \sf \: p(p - 6) = 0.......(eq.1)

__________________

From equation 1,

 \bf \: \: \:  \:  \:  \:  p = 0

 \bf \: \: \: \: \: \: p - 6 = 0 \to \: p = 6

Hence,

 \implies \bf \boxed{p = 0} \: or   \: \boxed{\: p = 6}

Answered by Anonymous
0

Given ,

The distance between the points (8,p) and (4,3) is 5 units

We know that ,

The distance between two points is given by

 \boxed{ \sf{D =  \sqrt{ {( x_{2} - x_{1} )}^{2}  +  {(y_{2} - y_{1} )}^{2} } }}

Thus ,

 \sf \mapsto 5 =  \sqrt{ {(4 - 8)}^{2} +  {(3 - p)}^{2}  }  \\  \\ \sf Squaring  \: on \:  both \:  sides  \: , \:  we \:  get  \\  \\\sf \mapsto  25 = 16  +  9 +  {(p)}^{2} - 6p   \\  \\ \sf \mapsto  {(p)}^{2}  - 6p + 25 - 25 = 0 \\  \\ \sf \mapsto  {(p)}^{2}  - 6p = 0 \\  \\ \sf \mapsto  p(p - 6) = 0 \\  \\ \sf \mapsto  p = 0 \:  \: or \:  \: p = 6

Therefore ,

The value of p will be 0 or 6

Similar questions