Math, asked by sandeepbansal9866, 11 months ago

9. If x = 4/3is a zero of the polynomial p(x) = 6x3– 11x2+ kx -20, then find the value of k.

Answers

Answered by vaibhavshukla97
1

Step-by-step explanation:

4/3 is zero of polynomial

BY REMAINDER THEOREM

P(4/3)=0

6*(4/3)³-11*2+K*4/3-20=0

6*64/27-22+4/3K-20=0

128/9-44+4/3k=0

4/3k=44-128/9

4/3k=396-128/9

4/3k=268/9

k=268/9*3/4

k=67/3ork=22.33333

Answered by CharmingPrince
26

\huge{\bigstar}{ \green{ \mathfrak{ \underline{ \underline{Question}}}}}{\bigstar}

□☆□☆□☆□☆□☆□☆□☆□☆□☆□

If x = \displaystyle\frac{4}{3} is a zero of the polynomial p(x) = 6x^3- 11x^2+ kx -20, then find the value of k

□☆□☆□☆□☆□☆□☆□☆□☆□☆□

───────────────────

\huge{\bigstar}{ \green{ \mathfrak{ \underline{ \underline{Answer}}}}}{\bigstar}

\boxed{\red{\bold{Given:}}}

\displaystyle \frac{4}{3} \ is \ the \ zero \ of \ p(x)

\boxed{\red{\bold{Thus :}}}

\red{\implies}p \left( \displaystyle\frac{4}{3} \right) = 0

{\red{\implies}}6 \left( \displaystyle \frac{4}{3} \right)^3 - 11 \left( \displaystyle\frac{4}{3} \right)^2 +k \left( \displaystyle\frac{4}{3} \right) -20 = 0

{\red{\implies}}6 \times \displaystyle\frac{64}{27} - 11 \times \displaystyle \frac{16}{9} + \displaystyle\frac{4k}{3} -20 = 0

\green{\implies}\displaystyle \frac{128}{9} - \frac{176}{9} + \frac{4k}{3} = 20

\green{\implies}\displaystyle \frac{128 - 176 + 12k}{9} = 20

\green{\implies}-48 + 12k = 180

\green{\implies}12k = 180 + 48

\green{\implies}12k = 228

\green{\boxed{\implies{\boxed{k = 19}}}}

───────────────────

Similar questions