Math, asked by Tarun1198, 9 months ago

9. If x = 7 +4v3, find the value of (√x+1/√x).​

Answers

Answered by rishu6845
11

Answer:

\boxed{\huge{\pink{ \sqrt{x}  +  \dfrac{1}{ \sqrt{x} }  = 4}}}

Step-by-step explanation:

\bold{\red{Given}}\longrightarrow \\ x = 7 + 4 \sqrt{3}

\bold{\green{To \: find}}\longrightarrow \\ value \: of \:  \\  (\sqrt{x}  +  \dfrac{1}{ \sqrt{x} } )

\bold{\blue{Concept \: used}}\longrightarrow \\ 1) {x}^{2}  +  {y}^{2}  + 2xy =  {(x + y)}^{2}  \\ 2) {x}^{2}  -  {y}^{2}  = (x + y) \: (x - y)

\bold{\pink{Solution}}\longrightarrow \\ x = 7 + 4 \sqrt{3}  \\ \:  \:  \:  \:   = 4 + 3 + 4 \sqrt{3}  \\  \:  \:  \:  \:  =  {(2)}^{2}  +  {( \sqrt{3}) }^{2}  + 2 \: (2) \: ( \sqrt{3} ) \\  x =  {(2 +  \sqrt{3} )}^{2}  \\ taking \: square \: root \: of \: both \: sides  \\  \sqrt{x}  = \sqrt{ {(2 +  \sqrt{3} )}^{2} }  \\  =  >  \sqrt{x}  = 2 +  \sqrt{3}  \\  =  >  \dfrac{1}{ \sqrt{x} }  =  \dfrac{1}{2 +  \sqrt{3} }  \\  =  >  \dfrac{1}{ \sqrt{x} }  =  \dfrac{1(2 +  \sqrt{3}) }{(2 +  \sqrt{3}) \: (2 -  \sqrt{3})  }  \\  =  >  \dfrac{1}{ \sqrt{x} }  =  \dfrac{(2 +  \sqrt{3}) }{ {(2)}^{2}  -  { (\sqrt{3} )}^{2}  }  \\  =  >  \dfrac{1}{ \sqrt{x} }  =  \dfrac{(2 +  \sqrt{3} )}{4 - 3}  \\  =  >  \dfrac{1}{ \sqrt{x} }  =  \dfrac{(2 +  \sqrt{3}) }{1}  \\  =  >  \dfrac{1}{ \sqrt{x} }  = 2 +  \sqrt{3}

now

 \sqrt{x}  +  \dfrac{1}{ \sqrt{x} }  = (2 +  \sqrt{3} ) + (2 -  \sqrt{3} ) \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   = 4

Answered by JanviMalhan
113

Given:

x = 7 +  4\sqrt{3}

To Find :

( \sqrt{x}  +  \frac{1}{ \sqrt{x} } ) \\  \\

Solution:

x = 7 + 4 \sqrt{3}  \\  \\  = 4 + 3 + 4 \sqrt{3}  \\  \\  = ( {2)}^{2}  + ( \sqrt{3)^{2} } + 2(2)( \sqrt{3} ) \\  \\ x = (2 +  \sqrt{3)}^{2}  \\  \\  \sqrt{x}  =  \sqrt{(2 +  \sqrt{3)} ^{2}  }  \\  \\  \sqrt{x}  = 2 +  \sqrt{3}  \\  \\  \frac{1}{ \sqrt{x} }  =  \frac{1}{2 +  \sqrt{3} }  \\  \\  \frac{1}{ \sqrt{x} }  =  \frac{(2 +  \sqrt{3)} }{ {(2)}^{2}  - ( \sqrt{3} )^{2}  }  \\  \\  \frac{1}{ \sqrt{x}}  =  \frac{(2 +  \sqrt{3)} }{4 - 3}  \\  \\  \frac{1}{ \sqrt{x} }  =  \frac{(2 +  \sqrt{3} }{1}  \\  \\   \frac{1}{ \sqrt{x} } = 2 +  \sqrt{3}   \\  \\  = 4

Similar questions