Math, asked by sriram2460, 5 months ago

9.
In AABC, if
3
1
atc btc a+b+c
then prove that C = 60°​

Answers

Answered by Anonymous
13

Answer:

ANSWER

Formula:

c

2

=a

+

b

2

−2abcosC

Given, ∠C=60

∴c

2

=a

+

b

2

−2abcos60

c

2

=a

+

b

2

−ab..............(1)

To prove:

a+c

1

+

b+c

1

=

a+b+c

3

a+c

1

+

b+c

1

=

a+b+c

3

(a+c)(b+c)

a+b+2c

=

a+b+c

3

(a+b+2c)(a+b+c)=3[(a+c)(b+c)]

a

2

+ab+ac+ba+b

2

+bc+2ca+2cb+2c

2

=3ab+3ac+3cb+3c

2

a

2

+b

2

+2ab−3ab=3c

2

−2c

2

a

2

+b

2

−ab=c

2

.............(2)

From (1) and (2) it's clear that,

a+c

1

+

b+c

1

=

a+b+c

3

Similar questions