Math, asked by namita04900, 7 months ago

9.In an A.P if a=5 ,nth term is 81 and sum of n terms of an A.P is 860 then n is *​

Answers

Answered by chandananandeesh
2

hope this helps uh dea....

Attachments:
Answered by Anonymous
3

Given:

a = 5

nth term = 81

Sum of n terms = 860

Answer:

\\

Explanation:

\\\\n_{th} \: term \: of \: an \: AP \:  =  \: a + (n - 1)d\\

81 = 5 + (n - 1)d\\

(n - 1)d = 76\\

(n - 1) =  \frac{76}{d}\\

n =  \frac{76}{d}  + 1\\

Taking LCM, we get:

\\n =  \frac{76 + d}{d} \: ......(1)\\\\

Sum \:  of  \: n \:  terms \:  =  \:  \frac{n}{2} \left(2a + (n - 1)d\right)\\

Substituting the values , we get:

\\860 \times 2 = n(10 + (n - 1)d) \\ 1720 = n(10 + (n - 1)d) \:  \:  \:  \:  \:  \:\\

Substituting the value of n from equation (1), we get:

\\1720 =  \frac{76 + d}{d} \left(10 +  \left(\frac{76 + d}{d} - 1 \right)d\right) \\ \\  1720 =  \frac{76 + d}{d} \left(10 +\left( \frac{76 + d - d}{d}\right)d\right) \\  \\ 1720 =  \frac{76 + d}{d} \left(10 +  \frac{76}{d}  \times d\right) \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ 1720 =  \frac{76 + d}{d} \times 86 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:\\

Sending 86 to LHS,

\\ \frac{1720}{86}  =  \frac{76 + d}{d}  \\  \\ 20 =  \frac{76 + d}{d}  \:  \:  \:  \:  \:\\

Sending d to LHS, we get:

\\20d = 76 + d \\ 19d \:  =  \: 76 \:  \:  \:  \:  \:  \:  \:  \\ d = 4 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:\\\\

Substituting the value of d in equation (1), we get:

\\n =  \frac{76 + 4}{4}  \\ n =  \frac{80}{4}  \:  \:  \:  \:  \:  \:  \:  \\ n = 20 \:  \:  \:  \:  \:  \:  \:  \:  \: \\\\

⭐More About AP⭐

nth term of an AP formulas

\sf 1) \: n_{th} \: term \: of \: any \: AP \: = a + (n - 1)d\\\\

\sf 2) \: (i) \: n_{th} \: term \: from \: the \: end \: of \: an \: AP \: = a + (m - n)d\\

\sf 2) \: (ii) \: n_{th} \: term \: from \: the \: end \: of \: an \: AP = l - (n - 1)d\\\\

\sf 3) \: Difference \: of \: two \: terms = (m - n)d\\

where m and n is the position of the term in AP\\\\

\tt 4) \: Middle \: term \: of \: a \: finite \: AP\\

\sf If\:n\:is\:odd=(\frac{n + 1}{2})th\\

\sf If \: n \: is \: even =\frac{n}{2} \: th\: term \: and \: (\frac{\:n\:}{\:2\:} + 1\:)th\\\\

Sum Formulas

\sf Sum \: of \: first \: n \: terms \: of \: an \:AP = \frac{n}{2} [ \: 2a + (n - 1)d \: ]\\\\

\sf Sum \: of \: first \: n \: natural \: numbers = \frac{n(n + 1)}{2}\\\\

\sf Sum \: of \: AP \: having \: last \: term = \frac{n}{2} [ \: a + l \: ]\\\\

⭐Numbers in an AP⭐

Three Numbers in an AP:

(a-d) , a and (a+d)

Four Numbers in an AP:

(a-3d) , (a-d) , (a+d) and (a+3d)

Five Numbers in an AP:

(a-2d) , (a-d) , a , (a+d) and (a+2d)

Similar questions