CBSE BOARD X, asked by srikrishna24, 11 months ago

9. In Fig. 5.27, AB and CD are two diameters of a circle
(with centre O) perpendicular to each other and OD
is the diameter of the smaller circle. If
OA= 7 cm, find the area of the shaded region.​

Attachments:

Answers

Answered by soham8580
7

Explanation:

so area of the shaded region is 66.5cm2

Attachments:
Answered by Anonymous
91

Solution:

Given:

=> AB = CD = 2 × 7 = 14 cm.

=> OD = OC = OB = OA = 7 cm.

=> Diameter AB ⊥ Diameter CD.

=> Radius = 7/2

To Find:

=> Area of shaded region.

Formula used:

\sf{\implies Area\;of\;circle=\pi r^{2}}

\sf{\implies Area\;of\;semi\;circle=\dfrac{1}{2}\pi r^{2}}

\sf{\implies Area\;of\;triangle = \dfrac{1}{2} \times base\times height}

So,

\sf{\implies Area\;of\;smaller\;circle=\pi r^{2}}

\sf{\implies \dfrac{22}{7}\times \bigg(\dfrac{7}{2}\bigg)^{2}}

\sf{\implies \dfrac{22}{7}\times \dfrac{7}{2}\times \dfrac{7}{2}}

\sf{\implies 38.5\;cm^{2}}

\sf{Now,\;area\;of\;semicircle = \dfrac{1}{2} \pi r^{2}}

\sf{\implies \dfrac{1}{2} \times \dfrac{22}{7}\times 7\times 7}

\sf{\implies 77\;cm^{2}}

\sf{\implies Area\;of\;triangle(ABC)=\dfrac{1}{2}\times Base\times Height}

\sf{\implies \dfrac{1}{2} \times 14\times 7}

\sf{\implies 49\;cm^{2}}

Now, Area of shaded region = Area of smaller circle + Area of semicircle - Area of triangle (ABC)

\sf{\implies 38.5\;cm^{2}+77\;cm^{2}-49\;cm^{2}}

{\boxed{\boxed{\sf{\implies So,\;Area\;of\;shaded\;region=66.5\;cm^{2}}}}}

Similar questions