Math, asked by sadiyanaaz827, 2 months ago

9. In figure 11.21, one pair of adjacent sides of
a parallelogram is in the ratio 3:4. If one of
its angles, ZA is a right angle and diagonal
BD = 10 cm, find the
© lengths of the sides of the parallelogram.
A
B
(ii) perimeter of the parallelogram.
Fig. 11.21​

Answers

Answered by 9765657456
0

Answer:

9. In figure 11.21, one pair of adjacent sides of

a parallelogram is in the ratio 3:4. If one of

its angles, ZA is a right angle and diagonal

BD = 10 cm, find the

© lengths of the sides of the parallelogram.

A

B

(ii) perimeter of the parallelogram.

Fig. 11.21

Step-by-step explanation:

Answer:

\red { Lengths \:of \: the \:sides \:of \:ABCD }LengthsofthesidesofABCD

\green {AB = DC = 8\:cm }AB=DC=8cm

\green { AD = BC = 6\:cm}AD=BC=6cm

\red { Perimeter \:of \:ABCD }\green {=28\:cm }PerimeterofABCD=28cm

Step-by-step explanation:

Given:

ABCD is a parallelogram .

One pair of adjacent sides ABCD is in the ratio 3:4.

\begin{gathered} \angle A = 90\degree \:and \: diagonal \\BD= 10\:cm\end{gathered}

∠A=90°anddiagonal

BD=10cm

Solution:

ABCD is a rectangle .

( One angle in a parallelogram is right angle )

i ) In \: \triangle DAB , \:\angle A = 90\degreei)In△DAB,∠A=90°

AD^{2} + AB^{2} = BD^{2}AD

2

+AB

2

=BD

2

\pink { By \: Phythagorean \:theorem)}ByPhythagoreantheorem)

\implies (3x)^{2} + (4x)^{2} = 10^{2}⟹(3x)

2

+(4x)

2

=10

2

\implies 9x^{2} + 16x^{2} = 10^{2}⟹9x

2

+16x

2

=10

2

\implies 25x^{2} = 10^{2}⟹25x

2

=10

2

\implies x^{2} = \left(\frac{10}{5}\right)^{2}⟹x

2

=(

5

10

)

2

\implies x = \frac{10}{5} = 2\:cm⟹x=

5

10

=2cm

ii) AD = BC = 3x = 3\times 2\:cm = 6\:cmii)AD=BC=3x=3×2cm=6cm

iii) AB = DC = 4x = 4\times 2\:cm = 8\:cmiii)AB=DC=4x=4×2cm=8cm

Perimeter\: of \: ABCD = 2(AB + BC)PerimeterofABCD=2(AB+BC)

\begin{gathered} = 2( 8\: cm + 6\:cm )\\= 2 \times 14\:cm \\= 28\:cm \end{gathered}

=2(8cm+6cm)

=2×14cm

=28cm

Therefore.,

\red { Lengths \:of \: the \:sides \:of \:ABCD }LengthsofthesidesofABCD

\green {AB = DC = 8\:cm }AB=DC=8cm

\green { AD = BC = 6\:cm}AD=BC=6cm

\red { Perimeter \:of \:ABCD }\green {=28\:cm }PerimeterofABCD=28cm

•••♪

Similar questions