English, asked by neelusinghj165, 1 month ago


9. In the adjoining figure, ABCD is a parallelogram and
diagonals intersect at O.Find the
angle ACD ​

Attachments:

Answers

Answered by krsankar659
1

Answer:

Here, ABCD is a parallelogram.

∠CBD=46

o

[ Given ]

AD∥BC and AC is a transversal.

∴ ∠CBD=∠BDA [ Alternate angles ]

∴ ∠BDA=46

o

.

So, ∠ODA=46

o

In △ODA,

⇒ ∠ODA+∠OAD+AOD=180

o

⇒ 46

o

+∠OAD+68

o

=180

o

⇒ 114

o

+∠OAD=180

o

⇒ ∠OAD=66

o

∴ ∠CAD=66

o

⇒ ∠D+∠A=180

o

[ Sum of adjacent sides are supplementary in parallelogram ]

⇒ (∠CDB+∠BDA)+(∠CAD+∠BAC)=180

o

⇒ (30

o

+46

o

)+(66

o

+∠BAC)=180

o

⇒ 142

o

+∠BAC=180

o

⇒ ∠BAC=38

o

⇒ ∠BAC=∠ACD [ Alternate angles ]

∴ ∠ACD=38

o

Now,

⇒ ∠ADC=∠CDB+∠BDA=30

o

+46

o

=76

o

∴ We get, ∠CAD=66

o

,∠ACD=38

o

and ∠ADC=76

o

this \: is \: correct \: answer \: please \:  \\ mark \: me \: braliset

Answered by chaurasiyashivam422
1

Answer:∠ACD = 38°

mark as brainliest

Explanation:

∠AOD +∠DOC = 180° ----> BEING ST. LINE

or, 68° + ∠DOC = 180°  

∴∠DOC  = 112°

in triange DOC,

∠DOC +∠ODC+ ∠ACD = 180° ---> sum of angles of a triangle

or, 112° + 30° +∠ACD =180°

∴∠ACD = 38°

Similar questions