9. In the figure, A, B, C, and D, E, F are two sets of collinear points. Prove that AD II CF.
10. In the figure, equal chords AB and CD of a circle with centre 0, cut at right angles at E.
If M and N are the mid-points of AB and CD respectively, prove that OMEN is a square.
LIHLZ=180
с
907 N
M
E
B
Answers
Answered by
0
Step-by-step explanation:
Step-by-step explanation:Join OE.
Step-by-step explanation:Join OE.
Step-by-step explanation:Join OE.In ΔOME and ΔONE,
Step-by-step explanation:Join OE.In ΔOME and ΔONE, OM =ON [equal chords are equidistant from the centre]
Step-by-step explanation:Join OE.In ΔOME and ΔONE, OM =ON [equal chords are equidistant from the centre] ∠OME = ∠ONE = 90°
Step-by-step explanation:Join OE.In ΔOME and ΔONE, OM =ON [equal chords are equidistant from the centre] ∠OME = ∠ONE = 90° OE =OE [common sides]
Step-by-step explanation:Join OE.In ΔOME and ΔONE, OM =ON [equal chords are equidistant from the centre] ∠OME = ∠ONE = 90° OE =OE [common sides] ∠OME ≅ ∠ONE [by SAS congruency]
Step-by-step explanation:Join OE.In ΔOME and ΔONE, OM =ON [equal chords are equidistant from the centre] ∠OME = ∠ONE = 90° OE =OE [common sides] ∠OME ≅ ∠ONE [by SAS congruency] ⇒ ME = NE [by CPCT]
Step-by-step explanation:Join OE.In ΔOME and ΔONE, OM =ON [equal chords are equidistant from the centre] ∠OME = ∠ONE = 90° OE =OE [common sides] ∠OME ≅ ∠ONE [by SAS congruency] ⇒ ME = NE [by CPCT] In quadrilateral OMEN,
Step-by-step explanation:Join OE.In ΔOME and ΔONE, OM =ON [equal chords are equidistant from the centre] ∠OME = ∠ONE = 90° OE =OE [common sides] ∠OME ≅ ∠ONE [by SAS congruency] ⇒ ME = NE [by CPCT] In quadrilateral OMEN, ∠MON = 360° - (∠OME + ∠MEN + ∠ONE)
Step-by-step explanation:Join OE.In ΔOME and ΔONE, OM =ON [equal chords are equidistant from the centre] ∠OME = ∠ONE = 90° OE =OE [common sides] ∠OME ≅ ∠ONE [by SAS congruency] ⇒ ME = NE [by CPCT] In quadrilateral OMEN, ∠MON = 360° - (∠OME + ∠MEN + ∠ONE) = 360° - (90° + 90° + 90°) = 90° [∠MEN = 90°, given]
Step-by-step explanation:Join OE.In ΔOME and ΔONE, OM =ON [equal chords are equidistant from the centre] ∠OME = ∠ONE = 90° OE =OE [common sides] ∠OME ≅ ∠ONE [by SAS congruency] ⇒ ME = NE [by CPCT] In quadrilateral OMEN, ∠MON = 360° - (∠OME + ∠MEN + ∠ONE) = 360° - (90° + 90° + 90°) = 90° [∠MEN = 90°, given] Thus, in quadrilateral OMEN,
Step-by-step explanation:Join OE.In ΔOME and ΔONE, OM =ON [equal chords are equidistant from the centre] ∠OME = ∠ONE = 90° OE =OE [common sides] ∠OME ≅ ∠ONE [by SAS congruency] ⇒ ME = NE [by CPCT] In quadrilateral OMEN, ∠MON = 360° - (∠OME + ∠MEN + ∠ONE) = 360° - (90° + 90° + 90°) = 90° [∠MEN = 90°, given] Thus, in quadrilateral OMEN, OM =ON , ME = NE
Step-by-step explanation:Join OE.In ΔOME and ΔONE, OM =ON [equal chords are equidistant from the centre] ∠OME = ∠ONE = 90° OE =OE [common sides] ∠OME ≅ ∠ONE [by SAS congruency] ⇒ ME = NE [by CPCT] In quadrilateral OMEN, ∠MON = 360° - (∠OME + ∠MEN + ∠ONE) = 360° - (90° + 90° + 90°) = 90° [∠MEN = 90°, given] Thus, in quadrilateral OMEN, OM =ON , ME = NE and ∠OME = ∠ONE = ∠MEN = ∠MON = 90°
Step-by-step explanation:Join OE.In ΔOME and ΔONE, OM =ON [equal chords are equidistant from the centre] ∠OME = ∠ONE = 90° OE =OE [common sides] ∠OME ≅ ∠ONE [by SAS congruency] ⇒ ME = NE [by CPCT] In quadrilateral OMEN, ∠MON = 360° - (∠OME + ∠MEN + ∠ONE) = 360° - (90° + 90° + 90°) = 90° [∠MEN = 90°, given] Thus, in quadrilateral OMEN, OM =ON , ME = NE and ∠OME = ∠ONE = ∠MEN = ∠MON = 90° Hence, OMEN is a square. Hence proved.
Answered by
3
Answer:
ab aap kon ho yarr abhi ko mera no . hi kyu chahiye
Similar questions
English,
2 months ago
Psychology,
2 months ago
Math,
2 months ago
Math,
4 months ago
Psychology,
4 months ago
English,
9 months ago