Math, asked by rekhabanti737, 1 month ago

9. . In the figure given alongside, ABC is a straight line. (0) If x = 53º, find y. D 15 (ii) If y=1 right angles, find x

Answers

Answered by BangtanGirl11
2

Answer:

(i) From the figure, ∠ABD + ∠DBC = 180° (Linear pair of angles) ⇒ x + y = 180° ⇒ 53°+ y = 180° (∵ x = 53”) ⇒ y = 180° – 53° ⇒ y = 127° (ii) From figure again, x + y = 180° 1 + 3/2 x 90 = 180° ⇒ x + 1 1/2 right angles = 180° ⇒ x + 3/2 x 90 =180° ⇒ x + 135°= 180° ⇒ x = 180° – 135° ⇒ x = 45°Read more on Sarthaks.com - https://www.sarthaks.com/171974/in-the-given-diagram-abc-is-a-straight-line-i-if-x-53-find-y

Answered by AbhinavRocks10
51

{\bold{\red{\sf{x+y=180°}}}}

{\bold{\red{\sf{x+(\frac{3}{2})90°=180°}}}}

{\bold{\red{\sf{x+135°=180°}}}}

\begin{gathered}\begin{gathered}\ll\boxed{ \begin{array}{cc}\large\sf\dag \: {\underline{☆More \: Formulae☆}} \\ \\ \bigstar \: \sf{Gain = S.P – C.P} \\ \\ \bigstar \:\sf{Loss = C.P – S.P} \\ \\ \bigstar \: \sf{S.P = \dfrac{100+Gain\%}{100} \times C.P} \\ \\ \bigstar \: \sf{ C.P =\dfrac{100}{100+Gain\%} \times S.P} \\ \\\bigstar \: \sf{ S.P = \dfrac{100-loss\%}{100} \times C.P} \\ \\ \bigstar \: \sf{ C.P =\dfrac{100}{100-loss\%} \times S.P}\end{array}}\end{gathered}\end{gathered}

Similar questions