9.
In the given figure, line RT is drawn parallel
to SQ. If QPS = 100°, PQS = 40°,
PSR = 85º and QRS = 70°, then
QRT =
(A) 45° (B) 65° (C) 85°
90°
Attachments:
Answers
Answered by
1
- gghjj and I am not sure if you have any questions or need any further information please contact me at
- use of an object to this email is strictly prohibited from using copying altering and the yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy the r lfor for a few of them in my hhhhhjjjjjjjj the use of the yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy the r lfor the use of the yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy the r lfor the use you have any questions or need any further information pl me at the end of the yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy the r lfor the
Answered by
2
Answer:
From the figure
In △PQS,
∠PQS+∠QPS+∠PSQ=180
∘
⟹∠PSQ=180
∘
−∠QPS−∠PQS=180
∘
−100
∘
−40
∘
=40
∘
Given ∠PSR=85
∘
⟹∠PSQ+∠QSR=85
∘
⟹∠QSR=85
∘
−∠PSQ=85
∘
−40
∘
=45
∘
In △QSR
∠QRS+∠PSQ+∠SQR=180
∘
∠SQR=180
∘
−∠QRS−∠QSR=180
∘
−70
∘
−45
∘
=65
∘
AS RT∥SQ
∠QRT=∠SQR=65
∘
(∵alternative angles)
:
Similar questions