Math, asked by user12385, 5 months ago


9. In the given figure, Sis the mid-point of side QR of A PQR. PS is extended
to T such that PS = ST. Prove that PT bisects QR.

Attachments:

Answers

Answered by diksha30508
0

Step-by-step explanation:

Mass of the bus, ( m ) ⟿ 7000 kg

Time taken by the bus to stop, ( t ) ⟿ 4 second

Initial velocity of the bus, ( u ) ⟿ 36 km/ hr

ㅤㅤㅤㅤㅤㅤㅤㅤ⟿ \large \: \sf { { \large{\cancel{36}}}\times \large\frac{ 10 \cancel0 \cancel0 \: \red m \: \: }{ \cancel{36} \cancel0 \cancel0 \: \red s \: \: } }

36

×

36

0

0

s

10

0

0

m

ㅤㅤㅤㅤㅤㅤㅤㅤ⟿ 10 m/s

Final velocity of the bus ⟿ 0

ㅤㅤㅤㅤ( Because it comes to rest )

Acceleration of the bus ⟿ \large \sf\frac{F}{m}

m

F

\begin{gathered} \\ \\ \end{gathered}

\begin{gathered} \\ \huge\mathfrak {\underline \purple{ \: \: \: \: \: \: \: \: \: formula \mapsto \: \: \: \: \: \: \: \: }} \\ \\ \\ \\ \large \bigstar \sf \boxed{ \bf \red {v = u + at}} \bigstar \\ \end{gathered}

formula↦

v=u+at

\begin{gathered}\\ \huge\mathfrak {\underline \purple{ \: \: \: \: \: \: \: \: Solution \mapsto \: \: \: \: \: \: \: \: }} \\ \\ \end{gathered}

Solution↦

Putting the Values ➲

\begin{gathered} \large \sf \longmapsto 0 = 10 + (\frac{f}{m}) \times 4 \\ \\ \large \sf \longmapsto 0 = 10 + ( \frac{F}{7000}) \times 4 \\ \\ \large \sf \longmapsto 0 = 10 + \frac{4F}{7000} \\ \\ \large \sf \longmapsto 0 = \frac{70000 + 4F}{7000} \\ \\ \large \sf \longmapsto 0 = 70000 + 4F \\ \\ \large \sf \longmapsto - 70000 = 4 \: F \\ \\ \large \sf \longmapsto \: F = \frac{ - 70000}{4} \\ \\ \large \sf \longmapsto \boxed{ F= - 17500 \: \red N} \\ \\ \end{gathered}

⟼0=10+(

m

f

)×4

⟼0=10+(

7000

F

)×4

⟼0=10+

7000

4F

⟼0=

7000

70000+4F

⟼0=70000+4F

⟼−70000=4F

⟼F=

4

−70000

F=−17500N

Therefore , the force applied to stop the bus = -17500 N

Answered by Lauv12
0

Answer:

PS is extended to T such that PS = ST. Prove that PT bisects QR. .

Similar questions