Math, asked by bittu12345nikhil, 9 months ago

9. It being given that is a zero of the polynomial(7x-x-6) find its other​

Answers

Answered by Anonymous
27

 \huge \sf \underline \red{ANSWER}

___________________________________________________

 \sf  \huge\underline \green{Correct \:  question : }

it being given that is 1 is a zero of the polynomial (7x-x³-6) find its other zeroes.

________________________________________________

 \sf \underline \blue{step \:  by  \: step  \: explanation }

Given

  • one is a zero of the polynomial of (7x-x³-6)

  • then x=1 is a factor of polynomial

  • (7x-x³-6) becomes (x³-7x-6)

_______________________________________________

 \tt \red{ \implies \:  -  ({x}^{3} - 7x - 6)}

 \tt \purple{ \implies \: -  ( {x}^{3} -  {x}^{2} +  {x}^{2} - x - 6x + 6)}

 \tt \blue{ \implies \: -  ( {x}^{3} -  {x}^{2}) + ( {x}^{2} - x) - 6(x - 1)}

 \tt \green{ \implies \: -   {x}^{2}(x - 1) + x(x - 1) - 6(x - 1)}

 \tt \orange{ \implies \: -  (x - 1)( {x}^{2}  + x - 6)}

 \tt \pink{ \implies \:  - (x - 1){( {x}^{2} + 3x + - 2x - 6)}}

 \tt \purple{ \implies \:  - (x - 1)(( {x}^{2} + 3x) - (2x + 6))}

 \tt \red{ \implies \:  - (x - 1){(x(x + 3) - 2(x + 3)}}

 \tt \blue{ \implies \: (x - 1)(x + 3)(x - 2)}

_______________________________

  • so factor of polynomial is (x+3)(x-2)

  • others zeroes or roots of polynomial is -3 and 2

or

Refer to attachment

_________________________________

Attachments:
Answered by Anonymous
23

hlo

❤▬▬▬▬correct Question ▬▬▬▬❤

It being given that is 1 is a zero of the polynomial (7x-x³-6) find its other zeroes

❤▬▬▬▬▬Given ▬▬▬▬▬▬▬❤

✨one is a zero of the polynomial of (7x-x³-6)

✨then x=1 is a factor of polynomial

✨(7x-x³-6) becomes (x³-7x-6)

❣️▬▬▬▬Answer▬▬▬▬▬▬❤

</p><p></p><p>\tt \red{ \implies \: - ({x}^{3} - 7x - 6)}⟹−(x3−7x−6)</p><p></p><p>\tt \purple{ \implies \: - ( {x}^{3} - {x}^{2} + {x}^{2} - x - 6x + 6)}⟹−(x3−x2+x2−x−6x+6)</p><p></p><p>\tt \blue{ \implies \: - ( {x}^{3} - {x}^{2}) + ( {x}^{2} - x) - 6(x - 1)}⟹−(x3−x2)+(x2−x)−6(x−1)</p><p></p><p>\tt \green{ \implies \: - {x}^{2}(x - 1) + x(x - 1) - 6(x - 1)}⟹−x2(x−1)+x(x−1)−6(x−1)</p><p></p><p>\tt \orange{ \implies \: - (x - 1)( {x}^{2} + x - 6)}⟹−(x−1)(x2+x−6)</p><p></p><p>\tt \pink{ \implies \: - (x - 1){( {x}^{2} + 3x + - 2x - 6)}}⟹−(x−1)(x2+3x+−2x−6)</p><p></p><p>\tt \purple{ \implies \: - (x - 1)(( {x}^{2} + 3x) - (2x + 6))}⟹−(x−1)((x2+3x)−(2x+6))</p><p></p><p>\tt \red{ \implies \: - (x - 1){(x(x + 3) - 2(x + 3)}}⟹−(x−1)(x(x+3)−2(x+3)</p><p></p><p>\tt \blue{ \implies \: (x - 1)(x + 3)(x - 2)}⟹(x−1)(x+3)(x−2)</p><p></p><p>

✨✨▬▬▬▬▬▬▬▬▬▬▬▬▬▬✨✨

❤so factor of polynomial is (x+3)(x-2)

❤others zeroes or roots of polynomial is -3 and 2

Or ▬▬▬❣️❣️❣️

Refer to attachment ❣️☺️

22❣️- Inboz

❣❣️℘Ɩɛąʂɛ ɬɧąŋƙ ɱყ 10 ąŋʂῳɛʀʂʂ❣️❣

Attachments:
Similar questions