Math, asked by Tanvi4500, 1 month ago

9^nx3²x[3-n/2]-²-(27)^n/3³m×2³=1/27
If
then prove that m-n=1​

Answers

Answered by mathdude500
3

\large\underline{\sf{Given- }}

 \:  \:  \:  \:  \:  \:  \:  \:  \bull \sf \: \dfrac{ {9}^{n}  \times  {3}^{2}  \times  {( {3}^{ -  \frac{n}{2} }) }^{ - 2} -  {27}^{n}  }{ {3}^{3m} \times  {2}^{3}}   = \dfrac{1}{27}

\large\underline{\sf{To\:prove - }}

 \:  \:  \:  \:  \:  \:  \:  \:  \bull \sf \: m - n = 1

\begin{gathered}\Large{\bold{{\underline{Formula \: Used - }}}}  \end{gathered}

Laws of exponents :-

\begin{gathered}(1)\:{\underline{\boxed{\bf{\blue{a^m\times{a^n}\:=\:a^{m\:+\:n}\:}}}}} \\ \end{gathered}

\begin{gathered}(2)\:{\underline{\boxed{\bf{\purple{\dfrac{a^m}{a^n}\:=\:a^{m\:-\:n}\:}}}}} \\ \end{gathered}

\begin{gathered}(3)\:{\underline{\boxed{\bf{\orange{\dfrac{1}{x^n}\:=\:x^{-n}\:}}}}} \\ \end{gathered}

\begin{gathered}(4)\:{\underline{\boxed{\bf{\color{peru}{(a^m)^n\:=\:a^{m\times{n}}\:}}}}} \\ \end{gathered}

\begin{gathered}(5)\:{\underline{\boxed{\bf{\red{ {x}^{0} = 1}}}}} \\ \end{gathered}

\begin{gathered}(6)\:{\underline{\boxed{\bf{\green{ {a}^{m} =  {a}^{n}  \implies \: m \:  =  \: n}}}}} \\ \end{gathered}

\large\underline{\bf{Solution-}}

↝ Given that

\rm :\longmapsto\:\sf \: \dfrac{ {9}^{n}  \times  {3}^{2}  \times  {( {3}^{ -  \frac{n}{2} }) }^{ - 2} -  {27}^{n}  }{ {3}^{3m} \times  {2}^{3}}   = \dfrac{1}{27}

\rm :\longmapsto\:\sf \: \dfrac{ {(3 \times 3)}^{n}  \times  {3}^{2}  \times  {( {3}^{n}) } -  {(3 \times 3 \times 3)}^{n}  }{ {3}^{3m} \times  {2}^{3}}   = \dfrac{1}{3 \times 3 \times 3}

\rm :\longmapsto\:\sf \: \dfrac{ {3}^{2n}  \times  {3}^{2}  \times  {( {3}^{ n}) }-  {3}^{3n}  }{ {3}^{3m} \times  {2}^{3}}   = \dfrac{1}{ {3}^{3} }

\rm :\longmapsto\:\dfrac{( {3}^{2n} \times  {3}^{n}) \times  {3}^{2} -  {3}^{3n}  }{ {3}^{3m} \times 8 }  =  {3}^{ - 3}

\rm :\longmapsto\:\dfrac{( {3}^{2n + n}) \times  {3}^{2} -  {3}^{3n}  }{ {3}^{3m} \times 8 }  =  {3}^{ - 3}

\rm :\longmapsto\:\dfrac{( {3}^{3n}) \times  {3}^{2} -  {3}^{3n}  }{ {3}^{3m} \times 8 }  =  {3}^{ - 3}

\rm :\longmapsto\:\dfrac{{3}^{3n}({3}^{2} - 1)}{ {3}^{3m} \times 8 }  =  {3}^{ - 3}

\rm :\longmapsto\:\dfrac{ {3}^{3n}(9 - 1) }{ {3}^{3m} \times 8 }  =  {3}^{ - 3}

\rm :\longmapsto\:\dfrac{ {3}^{3n} \times  \cancel8 }{ {3}^{3m} \times  \cancel8 }  =  {3}^{ - 3}

\rm :\longmapsto\:\dfrac{ {3}^{3n} }{ {3}^{3m} }  =  {3}^{ - 3}

\rm :\longmapsto\: {3}^{(3n - 3m)}  =  {3}^{ - 3}

\rm :\implies\:3n - 3m =  - 3

\rm :\longmapsto\: - 3(m - n) =  - 3

\bf\implies \:m - n = 1

{\boxed{\boxed{\bf{Hence, Proved}}}}

Similar questions