Math, asked by chotavim8073, 2 months ago

9.Prove that 13−√8+1√8−√7+1√7−√6+1√6−√5+1√5−2=5.

Answers

Answered by MrImpeccable
4

QUESTION:

  • Prove that: 1/(3 - √8) - 1/(√8 - √7) + 1/(√7 - √6) - 1/(√6 - √5) + 1/(√5 - 2) = 5

ANSWER:

TO PROVE:

  • 1/(3 - √8) - 1/(√8 - √7) + 1/(√7 - √6) - 1/(√6 - √5) + 1/(√5 - 2) = 5

PROOF:

We need to prove that,

:\longrightarrow\sf\dfrac{1}{3-\sqrt8}-\dfrac{1}{\sqrt8-\sqrt7}+\dfrac{1}{\sqrt7-\sqrt6}-\dfrac{1}{\sqrt6-\sqrt5}+\dfrac{1}{\sqrt5-2}=5

Solving LHS,

:\implies\sf\dfrac{1}{3-\sqrt8}-\dfrac{1}{\sqrt8-\sqrt7}+\dfrac{1}{\sqrt7-\sqrt6}-\dfrac{1}{\sqrt6-\sqrt5}+\dfrac{1}{\sqrt5-2}

We know that,

⇒ 3 = √9 and 2 = √4.

So,

:\implies\sf\dfrac{1}{\sqrt9-\sqrt8}-\dfrac{1}{\sqrt8-\sqrt7}+\dfrac{1}{\sqrt7-\sqrt6}-\dfrac{1}{\sqrt6-\sqrt5}+\dfrac{1}{\sqrt5-\sqrt4}

Now, we will rationalise each term individually and then place them in the above equation.

\\

Term 1:

:\implies\sf\dfrac{1}{\sqrt9-\sqrt8}

Here the rationalizing factor is (√9 + √8). So,

:\implies\sf\dfrac{1}{\sqrt9-\sqrt8}\times\dfrac{\sqrt9+\sqrt8}{\sqrt9+\sqrt8}

:\implies\sf\dfrac{\sqrt9+\sqrt8}{(\sqrt9-\sqrt8)(\sqrt9+\sqrt8)}

We know that,

⇒ (a + b)(a - b) = a² - b²

So,

:\implies\sf\dfrac{\sqrt9+\sqrt8}{(\sqrt9)^2-(\sqrt8)^2}

:\implies\sf\dfrac{\sqrt9+\sqrt8}{9-8}

So,

:\implies\sf\dfrac{\sqrt9+\sqrt8}{1}

Hence,

:\implies\sf\sqrt9+\sqrt8 - - - -(1)

\\

Term 2:

:\implies\sf\dfrac{1}{\sqrt8-\sqrt7}

Here the rationalizing factor is (√8 + √7). So,

:\implies\sf\dfrac{1}{\sqrt8-\sqrt7}\times\dfrac{\sqrt8+\sqrt7}{\sqrt8+\sqrt7}

:\implies\sf\dfrac{\sqrt8+\sqrt7}{(\sqrt8-\sqrt7)(\sqrt8+\sqrt7)}

We know that,

⇒ (a + b)(a - b) = a² - b²

So,

:\implies\sf\dfrac{\sqrt8+\sqrt7}{(\sqrt8)^2-(\sqrt7)^2}

:\implies\sf\dfrac{\sqrt8+\sqrt7}{8-7}

So,

:\implies\sf\dfrac{\sqrt8+\sqrt7}{1}

Hence,

:\implies\sf\sqrt8+\sqrt7 - - - -(2)

\\

Term 3:

:\implies\sf\dfrac{1}{\sqrt7-\sqrt6}

Here the rationalizing factor is (√7 + √6). So,

:\implies\sf\dfrac{1}{\sqrt7-\sqrt6}\times\dfrac{\sqrt7+\sqrt6}{\sqrt7+\sqrt6}

:\implies\sf\dfrac{\sqrt7+\sqrt6}{(\sqrt7-\sqrt6)(\sqrt7+\sqrt6)}

We know that,

⇒ (a + b)(a - b) = a² - b²

So,

:\implies\sf\dfrac{\sqrt7+\sqrt6}{(\sqrt7)^2-(\sqrt6)^2}

:\implies\sf\dfrac{\sqrt7+\sqrt6}{7-6}

So,

:\implies\sf\dfrac{\sqrt7+\sqrt6}{1}

Hence,

:\implies\sf\sqrt7+\sqrt6 - - - -(3)

\\

Term 4:

:\implies\sf\dfrac{1}{\sqrt6-\sqrt5}

Here the rationalizing factor is (√6 + √5). So,

:\implies\sf\dfrac{1}{\sqrt6-\sqrt5}\times\dfrac{\sqrt6+\sqrt5}{\sqrt6+\sqrt5}

:\implies\sf\dfrac{\sqrt6+\sqrt5}{(\sqrt6-\sqrt5)(\sqrt6+\sqrt5)}

We know that,

⇒ (a + b)(a - b) = a² - b²

So,

:\implies\sf\dfrac{\sqrt6+\sqrt5}{(\sqrt6)^2-(\sqrt5)^2}

:\implies\sf\dfrac{\sqrt6+\sqrt5}{6-5}

So,

:\implies\sf\dfrac{\sqrt6+\sqrt5}{1}

Hence,

:\implies\sf\sqrt6+\sqrt5 - - - -(4)

\\

Term 5:

:\implies\sf\dfrac{1}{\sqrt5-\sqrt4}

Here the rationalizing factor is (√5 + √4). So,

:\implies\sf\dfrac{1}{\sqrt5-\sqrt4}\times\dfrac{\sqrt5+\sqrt4}{\sqrt5+\sqrt4}

:\implies\sf\dfrac{\sqrt5+\sqrt4}{(\sqrt5-\sqrt4)(\sqrt5+\sqrt4)}

We know that,

⇒ (a + b)(a - b) = a² - b²

So,

:\implies\sf\dfrac{\sqrt5+\sqrt4}{(\sqrt5)^2-(\sqrt4)^2}

:\implies\sf\dfrac{\sqrt5+\sqrt4}{5-4}

So,

:\implies\sf\dfrac{\sqrt5+\sqrt4}{1}

Hence,

:\implies\sf\sqrt5+\sqrt4 - - - -(5)

\\

We have,

:\implies\sf\dfrac{1}{\sqrt9-\sqrt8}-\dfrac{1}{\sqrt8-\sqrt7}+\dfrac{1}{\sqrt7-\sqrt6}-\dfrac{1}{\sqrt6-\sqrt5}+\dfrac{1}{\sqrt5-\sqrt4}

Substituting values from (1), (2), (3), (4) & (5) into above equation,

:\implies\sf(\sqrt9+\sqrt8)-(\sqrt8+\sqrt7)+(\sqrt7+\sqrt6)-(\sqrt6+\sqrt5)+(\sqrt5+\sqrt4)

Opening brackets,

:\implies\sf\sqrt9+\sqrt8\!\!\!\!/\:-\sqrt8\!\!\!\!/\:-\sqrt7\!\!\!\!/\:+\sqrt7\!\!\!\!/\:+\sqrt6\!\!\!\!/\:-\sqrt6\!\!\!\!/\:-\sqrt5\!\!\!\!/\:+\sqrt5\!\!\!\!/\:+\sqrt4

So,

:\implies\sf\sqrt9+\sqrt4

As,

⇒ √9 = 3 and √4 = 2.

So,

:\implies\sf3+2

:\implies\bf{5 = RHS}

HENCE PROVED!!!

Similar questions