Math, asked by nandana12325, 10 months ago

9. Simplify: (64)^-1/3 [(64^1/3) – (64^2/3)]​

Answers

Answered by swaralipisantra95
0

Answer:

64^{-\frac{1}{3}}(64^{\frac{1}{3}}-64^{\frac{2}{3}})=-364

3

1

(64

3

1

−64

3

2

)=−3

Step-by-step explanation:

Given : Expression 64^{-\frac{1}{3}}(64^{\frac{1}{3}}-64^{\frac{2}{3}})64

3

1

(64

3

1

−64

3

2

)

To find : Simplify the expression ?

Solution :

We know that, 64=4^364=4

3

Replace that,

=(4^3)^{-\frac{1}{3}}((4^3)^{\frac{1}{3}}-(4^3)^{\frac{2}{3}})=(4

3

)

3

1

((4

3

)

3

1

−(4

3

)

3

2

)

Applying exponent identity, (a^b)^x=a^{b\times x}(a

b

)

x

=a

b×x

=(4)^{-\frac{3}{3}}((4)^{\frac{3}{3}}-(4)^{\frac{2\times 3}{3}})=(4)

3

3

((4)

3

3

−(4)

3

2×3

)

=(4)^{-1}((4)^{1}-(4)^{2})=(4)

−1

((4)

1

−(4)

2

)

=(4)^{-1}(4-16)=(4)

−1

(4−16)

=\frac{1}{4}\times(-12)=

4

1

×(−12)

=-3=−3

Therefore, 64^{-\frac{1}{3}}(64^{\frac{1}{3}}-64^{\frac{2}{3}})=-364

3

1

(64

3

1

−64

3

2

)=−3

Answered by sg2544
2

Hello mate....

Hope it helps you.....

Attachments:
Similar questions